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ABSTRACT

Centrifugal compressors are widely used turbomachines
employed across various fields as components of systems, such
as being part of a turbocharger in an internal combustion engine
or a refrigeration cycle. As a result of system analysis, the
compressor parameters are determined with 0D or 1D solvers.
Simultaneously, the compressor performance, as well as other
components, influence the results of system analysis. The system
analysis starts with compressor performance assumptions that
could be taken from a prototype or based on the engineer’s
experience and prior domain knowledge. If the new design
deviates significantly from the prototype, its performance
assumptions diverge from the actual compressor performance,
necessitating numerous iterations to align system and
component parameters with overall system requirements and
constraints. Therefore, the design and development projects of
modern centrifugal compressors are lengthy and very expensive.

The research described in this paper aims to develop highly
accurate single-stage centrifugal compressor performance
models coupled with flow path geometry generation models
leveraging artificial intelligence (Al) technology. These models
offer the potential to circumvent expensive design-build-test
iterations, thereby substantially reducing the time and cost of
developing modern centrifugal compressors.

In this paper, the various configurations of centrifugal
compressors are considered, along with a description of the
configurations of interest. The selection of input and output
variables that provide sufficient information about compressor
design with the respective ranges is justified. There is a detailed
description of automated workflows for centrifugal compressor
design and performance data generation for neural network
training. The approaches for data preprocessing that enable
high-accuracy predictions are provided, and the peculiarities of
applying the Al technology developed by the authors for
centrifugal compressors are discussed. An analysis of the trained
model accuracy as well as the technique for quantitative
assessment of prediction reliability is provided. The utilization of
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the centrifugal compressor Al model integrated into a gas
turbine engine simulation environment is demonstrated.

Keywords:  Centrifugal Compressor, Flow Path,
Performance Map, Machine Learning, Artificial Neural Network
NOMENCLATURE

Al Artificial Intelligence

ML Machine Learning

1D One-Dimensional

2D Two-Dimensional

3D Three-Dimensional

CFD Computational Fluid Dynamics
NN Neural Network

AutoML  Automated Machine Learning

RPM Revolutions Per Minute
MSE Mean Squared Error
MFR Mass Flow Rate

ptr Total-to-Total Pressure Ratio

eff tt Total-to-Total Efficiency

Degx Equivalent Diffusion Factor

ReLU Rectified Linear Unit

DIt inlet tip diameter

Di1h inlet hub diameter

D2 outlet diameter

z number of blades

B axial length of the compressor wheel

Ic2 outlet impeller blade height

FFNN Feed Forward Neural Network

SVM Support Vector Machine

GBPNN  Gaussian kernel function back propagation neural
network

IGV Inlet Guide Vane

GTU Gas Turbine Unit

AE Autoencoder
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1. INTRODUCTION

In the process of conducting a system cycle simulation,
engineers should define the realistic performance levels expected
from the components to be employed. These performance
metrics can be established through past experiences or based on
empirical correlations [1]. After that, the first iteration of the
cycle simulation is executed. Once the boundary conditions are
computed, they are then handed over to a design engineer for the
preliminary design of the component based on different fidelity
levels (1D/2D/3D) [2, 3]. This involves determining both the
dimensions and the component performance. However, the
determined performance may significantly deviate from what
was initially assigned. = That leads to the necessity of
performing additional iterations between cycle simulation and
preliminary design levels, which elongates the duration and
increases the costs of the project.

There is an opportunity to minimize the number of iterations
between the system analysis and preliminary design phases. This
can be achieved by improving the performance estimation
accuracy, coupled with the flow path geometry prediction
procedure for different compressor configurations, accounting
for off-design modes and avoiding the need to pass the
compressor design task to the compressor team during the
system analysis step.

This study involved the development of an approach for
estimating the performance and dimensions of centrifugal
compressors with a fidelity comparable to 2D streamline results,
significantly reducing time compared to existing 2D approaches.
The developed approach is intended for use at the cycle
simulation level, enabling engineers to quickly identify the
optimal compressor design while considering design restrictions.

As mentioned above, compressor performance estimation
can be solved using the numerous codes that are currently
available. The fidelity of these codes varies from 1D to 3D CFD.
1D provides the results with a relatively brief time range, but it
is based on empirical correlations or analytical equations derived
with certain assumptions only valid in limited ranges [4]. The
modern requirements for compressors demand higher fidelity
and more assuredness in predictions. For higher fidelity, 3D CFD
codes are used [5, 6]. They are more universal in this respect, but
they are much more resource-intensive compared to 1D.

The employment of autonomous ML technologies allows
for the obtainment of the speed of performance prediction faster
than 1D codes and the fidelity comparable to 3D CFD codes if
3D CFD results are contained in the training data set.

ML technologies are successfully used in areas of visual
recognition, natural language processing, evidence-based
treatment plans, games, and many others. However, despite
remarkable success in the areas mentioned above, the application
of Al for the prediction of compressor performance is just
starting to be widely considered. The authors of [7] compared
loss-analysis-based model prediction results with the Kriging
model and neural network model. The results show a higher
accuracy in interpolation and extrapolation capabilities of loss-
analysis-based models in comparison with other models.
However, the study was performed for a single performance map

only, and there is no comparison of the used model’s prediction
for different compressor geometries and different shapes of
speedlines. The authors do not address the question of selecting
the optimal neural network architecture, which could influence
the predicting capabilities of the neural network. Gholamrezaei
and Ghorbanian [8] used FFNN for the generation of the
performance map of axial compressors, employing the
experimental data. The architecture of FFNN was selected based
on empirical investigation that may not be optimal. The study is
performed for a single performance map. Fei and Zhao [9]
applied GBPNN and compared it with FFNN and SVM methods
to check their interpolation and extrapolation capabilities for
axial compressor maps. In [10] authors used SVM with a genetic
algorithm to optimize its parameters to predict the performance
of a compressor under all operating conditions through limited
data. Lory$ and Orkisz [11] checked the interpolation and
extrapolation capabilities of FFNN accounting for the “relative
stability margin” in the training process. In [12] authors applied
FFNN to predict compressor characteristics of a single spool
turboprop engine. Massoudi and others [13] used neural
networks to generate fast and accurate high-fidelity models for
small-scale turbocompressors. The optimization task based on
the genetic algorithm was formulated to determine the optimal
set of network hyperparameters. The trained Al model is then
used to determine the optimal robust design of the compressor.

Despite there being many publications that consider the
application of NN for compressor performance prediction, most
of them cover a single performance map and analyze
interpolation and extrapolation capabilities in comparison with
other approaches. That approach does not completely open the
capabilities of NNs to predict compressor performance for
different designs and layouts. Moreover, the architecture of NNs
used in publications is not optimal and selected based on
empirical or author assumptions, which could significantly
influence prediction results.

This work was focused on advancing the application of ML
technologies for centrifugal compressor performance predictions
accounting for different configurations and consists of three
major steps:

1. Adopt the procedure outlined in [14] for creating an Al-
based model used for performance prediction of the centrifugal
COMPressor.

2.Develop the algorithm and train the Al model for
centrifugal compressor geometry predictions.

3.Study the applicability of the trained Al models for
centrifugal compressors in the cycle simulation tool to identify
the most efficient compressor design.

2. APPROACHES AND METHODS
The following technical activities were performed:

Centrifugal compressor design

Training data generation and pre-processing

ML techniques, hyperparameters fine-tuning, and
training
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e Utilization of the trained centrifugal compressor
models along the GTU cycle simulation.

This section describes the approaches and methods used for
every type of technical activity.

2.1 Compressor Design

In this work, the training data consists of the geometry
generated for various configurations of single-stage centrifugal
compressors and the corresponding performance for the
compressor operational range. There are multiple configurations
of centrifugal compressors: single stage or multistage, with IGV
or without, with volute or without, etc.

The training data generated in this work consists of four
configurations of a compressor: impeller with splitters and
without, layout with vane diffuser after the impeller, and without
a vane diffuser. All configurations include a volute.

The compressor flow path design and the performance
estimation of the designed flow path were calculated using
AXSTREAM® and its respective modules and solvers [2]. In
particular, compressor design was performed with a Preliminary
design module. The 2D streamline solver was used by employing
loss model correlations based on Aungier [15]. The reliability of
the compressor performance prediction utilizing the
AXSTREAM® solvers is confirmed by numerous validation
cases and a couple of them are provided below.

FIGURE 1 represents case 1 validation results of the 2D
solver for the centrifugal compressor [16]. In turn, FIGURE 2
shows case 2 with the comparison of 2D solver results with test
data from [17]. As it can be seen in the figures there is good
agreement between the test data and 2D solver results, justifying
the use of the solvers for generating sufficiently accurate datasets
for Al training.

The design of the compressor is determined by 15 variables:

1. categorical variable that determines the splitter
presence for design
categorical variable that determines the presence of a
vane diffuser after vaneless one
design point pressure ratio
design point mass flow rate
flow factor
work coefficient
relative diameter ratio at the inlet
specific speed
blade loading
0. meridional velocity ratio (outlet to the inlet of the

impeller)
11. impeller incidence angle
12. the axial length of the impeller
13. relative clearance
14. radial length of a vane diffuser
15. radial length of a vaneless diffuser

n
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The radial length of the vane diffuser and the radial length
of the vaneless diffuser variables depend on the layout of the
compressor. If the layout does not include the vane diffuser, then
the radial length of the vane diffuser is equal to zero and the

radial length of the vaneless diffuser is varied in the specified
ranges. Otherwise, the radial length of the vaneless diffuser is
equal to 1.08 and the radial length of the vane diffuser is varied.

A) GEOMETRY OF COMPRESSOR [16]
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C) EFFICIENCY MAP FOR COMPRESSOR [16] AT
DESIGN ROTATIONAL SPEED

FIGURE 1: CASE 1 VALIDATION OF SOLVER WITH
COMPRESSOR [16]

Additionally, the off-design rotational speed and off-design

mass flow rate are used to predict the performance of the
compressor at off-design modes.
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A) GEOMETRY OF COMPRESSOR [17]
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FIGURE 2: CASE 2 VALIDATION OF SOLVER WITH
COMPRESSOR [17]
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All this data is used as the input parameters for the
preliminary design. The designs were generated for fixed inlet
total pressure and inlet total temperature. The working fluid is
air. The design variables and constraints were selected to cover

the wide range of compressors used in the automotive industry,
refrigeration, aerospace, HVAC, etc.

Sobol sequence [18] is used to generate the combinations of
variables.

2.2 Training Data Generation and Pre-processing

Once the combination of the design variables is generated,
the data is transferred to the preliminary design procedure. In
case the design cannot be generated for the combination of
variables, the current action is stopped for this combination and
the following combination is evaluated.

Otherwise, if the preliminary design of the flow path was
completed successfully, the generated design is used for further
actions.

To automate the process of training data generation, an
automated workflow was developed (FIGURE 3). The first
section of the workflow is responsible for the compressor design
procedure and geometrical data-set generation. It should be
noted that the preliminary design procedure is based on an
inverse task formulation, and the results of the direct calculation
of the compressor may be slightly different. To save the dataset
and the results of the direct task formulation, additional actions
are automatically performed before the design is saved. The
design procedure includes the utilization of 3D geometry for
more accurate determination of the throat area, checking if the
design is close to choke, estimating 2D performance at the design
mode, and adjusting the relative clearance value if, after the
design procedure, the absolute clearance value is out of the

physical range.
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FIGURE 3: AUTOMATIC WORKFLOW  FOR
COMPRESSOR PERFORMANCE DATA GENERATION
AND PRE-PROCESSING
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In the current study, 51 geometrical parameters were
extracted from each generated design and utilized as output data
for Al model training. Furthermore, the designs are used to
calculate the performance of compressors.

The goal of the performance estimation part of the workflow
is to prepare raw data coming from the compressor performance
calculation code to a form suitable for successful training, i.e.,
remove outliers, smooth choke, and surge limit lines, and save
the data set in a proper format. In particular, surge point
determination is performed based on the criteria of the maximum
allowable equivalent diffusion factor value (Degx) [15]. This
factor determines the onset of flow separation on the blade
surface. The choke point was determined based on the criteria of
an efficiency drop by 40% relative to the maximum efficiency
value on the speedline. Performance points beyond the surge and
choke points were considered as outliers.

It should be noted that the workflow presented in FIGURE 3
is a schematic representation. Every block in the figure is a block
scheme created in AXSTREAM ION™ where certain blocks and
scripts were integrated into a specific algorithm that processes
the data. For example, the workflow for the determination of
surge points is shown in FIGURE 4.

Surge point, < Set of mass
search True
Z Calculation
3 results
_ A 1
2D performance
caleulation
FTA

FIGURE 4: WORKFLOW FOR DETERMINATION OF
SURGE POINT FOR THE SPECIFIED SPEEDLINE

In FIGURE 4 the "Set of mass flow values" iterates through
the initial range of the assumed mass flow values where the
speedline may theoretically exist and be determined by the
"Mass Flow Rates Clarification for given rotational speeds"
algorithm. Each iteration involves estimating the performance
point, and the Degx value while tracking the identifiers of the
solver's successful completion, and saving the calculation results
for future proceedings. Once all mass flow points have gone
through the calculation, the results are transferred to the
implemented methodology that determines the exact value of the
mass flow, which corresponds to the required Deqx. The
methodology is based on approximating the results of successful
solver execution using the Catmull-Rom spline [19].

The presented workflow was successfully used to generate
data sets for all considered compressors.

During the process of preparing the data sets for compressor
performance model training, the authors use a parametric model-
based approach for the representation of the compressor maps to

improve the quality of prediction of the speedline shapes. This is
because preliminary predictions of performance as separated
points showed that the shape of speedlines was predicted
incorrectly due to unrealistic oscillations near the surge point.
The requirement for the parametric model was flexibility
sufficient to represent the wide variety of speedline shapes on
one hand and inherited correspondence to the typical shape of
speedlines without unrealistic oscillations on the other hand. The
flexibility of polynomials of the second order was not sufficient.
In turn, the polynomials of the third or higher orders suffered
from unphysical fluctuations. The flexibility and fit of speedlines
for centrifugal compressors with satisfying accuracy were
ensured by combining three Bezier curves [20]: one linear Bezier
curve and two quadratic Bezier curves in the middle section of
the speedline and at the surge region. The developed parametric
model (FIGURE 5) was used for representing pressure ratio and
efficiency curves vs mass flow. The model was named
parametric Model 2. Model 1 which was used for the
parametrization of pressure ratio curves of axial compressors is
described in [14]. The connections of the sections of the
combined curve are tangent to each other at respective
connection points PO and P2 forming a composite Bezier curve.

P1

-o—o- - Original data

P2

—— - Approximation by
parametric model

e - Parametric model
base points

P2’

\4

MFR
FIGURE 5: PARAMETRIC MODEL 2

The linear and quadratic Bezier curves are determined by
equations (1) and (2) respectively, accounting for (3).

B(t) = Py + t(P, — Py) (1)

B(t)=(1-0[(A-t)P,+tP,] (2)
+t[(1 - )P, + tP,]

0<t<1 (3)

where, t — is a parameter; and P,, P,,P, — are Bezier curve
base points in the respective coordinate system.

According to Model 2, the shape of the combined curve is
fully determined by 10 parameters: two coordinates of surge
point PO’ plus two coordinates of choke point P2°, along with
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six dimensionless factors determining the relative locations of
the other four base points.

The transformation of the training, validation, and test data
sets to a parametric view is performed by the Levenberg-
Marquardt algorithm [21].

Besides fitting the generated data, additional manipulations
were conducted to prevent the emergence of unphysical shapes
in the predicted speed lines. In particular, to avoid the “mirror”
speedlines which are caused by the error in the prediction of
mass flow rate at the surge and choke points, the substitution of
surge mass flow value is performed. The resulting surge mass
flow value in this case is the difference between the predicted
choke mass flow rate and the predicted difference in the choke
and surge point mass flow rates. As the quality assessment of the
result shows, such substitution positively affects the model
accuracy, especially for the speedlines where the difference
between surge and surge point mass flow rates is small. The
difference between choke and surge mass flow rates is always
positive, so the results of the trained model prediction are also
positive. Consequently, this prevents the occurrence of predicted
speed lines with a surge point to the right of the choke point.

A similar approach is used for pressure ratio values, where
the speed lines are almost horizontal.

2.3 ML Techniques, Hyperparameters Fine-tuning, and
Training

2.3.1 Performance Prediction

Different machine learning approaches/techniques can be
used to predict compressor performance, such as the Kriging
model, feedforward neural networks with back-propagation,
Gaussian kernel function, support vector machines, and others
[7-13].

Previous studies showed that utilization of feedforward
neural networks (FFNN) with back-propagation with a focus on
the search for optimal hyperparameters based on AutoML
approaches, provides the required accuracy of performance-
trained models [14].

In [14] the AutoKeras algorithm [22] with Greedy tuner [23]
is used for the search for optimal combinations of
hyperparameters like the number of hidden layers, number of
neurons in every layer, activation functions, learning rates, and
dropout.

MSE as a loss function and the “Adam” optimizer [24] were
used for regression models. The data was normalized using a
standard scaler [25].

The detailed justification of AutoKeras selection among the
various AutoML approaches is presented in [14]. The number of
trials for performance model training is equal to 20.

It should be noted that the accuracy metric for the trained
models was quantified as the percentage of speedlines that have
a prediction error less than a specified threshold. The prediction
error is calculated using equation (4) for every speedline from
validation and test sets. The target value is 95% of all speedlines
should have a relative difference < 5 % (equation (4)) in pressure
ratio and efficiency.

_ 23014y = Piq | + Ay — P - (G — Gi_q)

RD
Y (At P A+ P) (G — Gimy)

(4)

where, A;, A;_, - the actual values of the considered parameter
at the current G; and previous G;_, value of mass flow rate;
P;, P;_, - the predicted values of the considered parameter at the
current G; and previous G;_, value of mass flow rate.

In the data sets transformed for the training of NNs to predict
parametrized curves described in the previous section, the
performance points belonging to a speedline are replaced with
10 parameters for pressure ratio and efficiency curves. It was
determined that, unlike in [14], where the coordinates of the
choke and surge points play a much more substantial role in the
final level of error for speedlines compared to the dimensionless
factors, in centrifugal compressor speedlines with relatively low
rotation speed, the dimensionless parameters also play a
substantial role in predicting accuracy. Therefore, for the current
study, the training process includes not only separate NNs for
every coordinate of the choke and surge point but also separate
NNs for dimensionless factors of parametric curves. Such a split
still allows having the common models for the prediction of
Choke MFR and Surge MFR and using them for ptr and eff_tt.
Moreover, it allowed consistency in MFR values across all
models. All models were trained independently, and then, at the
inference step, the predictions of all the models were combined
to recreate the entire speedline. The total number of models for
the four considered performance parameter predictions (ptr and
eff_tt) consists of 34 models.

The required inputs to the model are the design parameters
described in Section 2.1 and rpm and mfr at off-design. As the
models predict the speedline choke and surge point locations it
is also possible to use a trained model to predict the entire
speedline. For this goal, the MFR definition was not obligatory.

To estimate the uncertainty level of the prediction results,
additional NN models were trained with different initial guesses
for the model weight coefficients. The additional model training
is performed once the optimal architecture of NN is determined
by the AutoKeras algorithm. In this case, the result of the NN
prediction is the average value of the variable for all additional
models. The uncertainty level is determined by the maximum
and minimum values of the variable across all additional models.
The total number of uncertainty models is 20.

2.3.2 Geometry Prediction
The architecture of the geometry prediction model consists
of a combination of two NN types: autoencoder (AE) and FFNN.

Training of the models includes the following steps:

e Utilization of autoencoders to train encoder and
decoder parts

e Replacing the encoder part by FFNN and training this
network to preserve the decoder part

As multiple testing results show, such a network structure
allows for more accurate predictions compared to a simple
FFNN architecture. The difference is especially noticeable for

6 © 2024 by ASME



the geometrical model that contains a large number of outputs
(geometry of multistage turbomachines).

Accuracy estimation was performed using the same
criterion as for performance prediction (equation 4).

It should be noted that the architecture of the NN for the
geometry prediction model depends on the number of input and
output variables. The utilization of AutoKeras, as it is for
performance models, will be tested in future studies.

MSE was used as the metric for continual and discrete
parameters. Optimization of the model for categorical
parameters prediction such as splitter presence and type of layout
was based on the Categorical Cross-Entropy loss function [26].
The one-hot encoding approach [27] was applied to the
categorical variables. The main goal of this approach is to
prevent the model's poor performance or unexpected results by
avoiding a natural ordering between categories.

It should be noted that utilization of such an approach makes
it impossible to train a separated model for each output variable,
as they are dependent on the same latent space, and created by
training autoencoder.

The uncertainty estimation of the output parameter is
different from the performance prediction (FIGURE 6). Here the
training process has started for the specified number of models
(n) that are hyperparameters for the algorithm. The goal of NN
training is to minimize the deviation between the average NN
prediction and real value. The training process is then repeated
k-times, which are represented as separate k branches in
FIGURE 6. The result of NN prediction is the average value of
all k-results predictions and the uncertainty range is the maximal
and minimal value of variable for all k-results. For this study
n=10 and k=10.

1 2 . k
Model 1 Model 1 Model 1
Model 2 Model 2 ’ Model 2
Model n Model n . Model n

(ave—true) >min (ave—true) >min

average 2

\ 4
| Average Prediction

(ave—true) >min

average 1 average 3

FIGURE 6: UNCERTAINTY DETERMINATION FOR
GEOMETRY MODEL

FIGURE 7 shows the accuracy variation at different n and k
values. As can be seen at the low n value, the accuracy for k=1
is higher than for k=10. This is because, for k=10, 20-30% of the
n models have an accuracy lower than 80% which reduced the
resulting model accuracy. In turn, for the case n=1 and k=1, the
model with a higher accuracy is used. With the rise of n, and with
the fixed k value, the influence of n “bad” models becomes

lower. Further rise of n for fixed k leads to the resulting model
accuracy growth. The accuracy of the resulting model is higher
for higher values of k. However, for k=10 increasing the n value
to higher than 9 does not lead to significant accuracy gains. Thus,
taking into account that accuracy at n=10 and k=10 was almost
equal to 1, the further increase of n and k was not justifiable for
our case.

1
5¢10 9x10 10x10
ox1 10x1

1x1 (nxk)

& 0.98
3 —k=10
® k=1

0.97

1x10 (nxk)
0.96
0 2 4 6 8 10

Experiment number

FIGURE 7: MODEL ACCURACY WITH DIFFERENT N
AND K

2.4 Utilization of The Trained Models in System
Simulation Environment

To analyze the possibility of determining the optimal design
of a centrifugal compressor by calculating the thermodynamic
cycle, the gas turbine unit (GTU) cycle was created in a system
simulation environment (FIGURE 8).

& - LA ﬁ
ﬂ‘ | he

0 :

FIGURE 8: GTU CYCLE TO TEST TRAINED Al MODELS

The GTU cycle in FIGURE 8 includes the following main
components: intake, compressor, gas generator, compressor
turbine, power turbine, and generator. The AXSTREAM System
Simulation™ tool was used to integrate the trained centrifugal
Al models (geometry and performance) using API. It should be
noted that the Al component for model integration is
independent and can be related to any component in the system
simulation tool, e.g. turbine, heat exchanger, combustor, etc.

In this study, the cycle simulation environment provides the
boundary conditions to Al models and gets back the performance
level and geometry values. The Al performance estimation
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procedure is called at each internal iteration of the system
simulation solver.

The goal of the optimization is to determine the optimal
combination of compressor design parameters that maximize
efficiency. The Differential Evolution algorithm [28] is
employed as the optimization method. The population size is
100, the number of iterations is 30, the “polish” option is set to
true, and the accuracy is 1E-5.

The results of the simulation are presented in section 3.3.

3. RESULTS AND DISCUSSION

Leveraging the approaches and methods described in the
previous section, the respective technical activities were
performed. Selected results are presented and discussed in this
section.

3.1 Training Data Generation and Pre-processing
Results

Utilizing the workflow described in section 2.2, the
performance and geometry data were generated for a wide range
of pressure ratios and mass flows. The generated data was then
pre-processed and prepared, i.e., the generated data sets were
clean and ready to be used for training.

The following data sets were generated:

o Geometry: 33,498 geometry points in the training data set.

o Performance: 3,128,586 performance points in the
training data set that corresponds to 14,900 compressor designs.
After transforming separated speedline points to Bezier splines
representation by automatic curve fitting as described in Section
2.2, the final number of points for performance prediction
consists of 104,000 points.

Examples of the generated data with automatic curve fitting
for total-to-total pressure ratio (ptr) and total-to-total efficiency
(eff_tt) are presented in FIGURE 9 and FIGURE 10.
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— 0% %
35 1 — 80%
— 0%
— 100%
3.0 1 105%
) ——
&
[« %
2.5 1
2.0 1 i
1.5

0.5 0.75 1.00 1.25 1.50 175 200 225

mfr. ka/s

FIGURE 9: TOTAL-TO-TOTAL PRESSURE RATIO
AUTOFITTING EXAMPLE

In FIGURE 9 and FIGURE 10, the dots represent the
performance points from the generated data sets, and the lines
are fitted curves by the parametric model described in Section

2.2. The legend represents rotational speed in % to the design
speed. It can be seen that Model 2 has sufficient flexibility to
approximate the wide variety of speedline shapes and does not
have any unphysical oscillations or kinks. It should be noted that
the presented performance curves do not contain sharp spikes. In
[14 and 29] it was shown that Model 2 was able to represent even
sharp spikes of efficiency curves that are typical for high-loaded
axial compressors.
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0.70

eff_tt, -

0.65
— 50%
— 60%
0.60 { 00,
— 80%
0.55 { — 90%
- 100%
105%

0:50 0.75 1.00 1:25 1:50 1:75 2‘.00 2.25
mfr, kg/s
FIGURE 10: TOTAL-TO-TOTAL EFFICIENCY AUTO
FITTING EXAMPLE

3.2 Training Results
3.2.1 Geometry Prediction Results

The results of geometry model training show that for 99.7%
of validated designs the geometrical parameters prediction error
does not exceed 5%, and the error for 99.9% of designs does not
exceed 10%.

The example of the predicted geometry inserted into
AXSTREAM® is shown in FIGURE 11.

e e——

RSP

FIGURE 11: PREDICTED GEOMETRY LOADED IN
AXSTREAM®

TABLE 1 demonstrates the geometrical model prediction
for validated designs.

8 © 2024 by ASME



TABLE 1: PREDICTION ERRORS FOR GEOMETRY

D1t Dih D2 z B Ic2

error, % error, % error, % error,% error,% error,%
Designl | 0.23 1.10 1.10 0.00 1.52 2.46
Design2 | 0.07 0.15 0.15 0.00 0.20 2.64
Design3 | 0.06 0.02 0.02 0.00 0.03 0.14

FIGURE 12 shows the compressor performance calculated
in AXSTREAM® based on the predicted geometry (“predict”
line in the figure) and the performance from the validation
dataset (“true” line in the figure) that was generated using the
automated workflow (Section 2.2). This is to demonstrate the
quality of centrifugal compressor flow path geometry
predictions.

4.5

— trued' .
— i
40 105

1.0

0.40 050 060 0.70 0.80 090 1.00 1.10
mfr, kg/s
FIGURE 12: COMPRESSOR MAP FOR THE TRUE AND
PREDICTED DESIGNS

It can be seen that the developed approach for geometry
prediction allows getting the geometry of the centrifugal
compressor with high accuracy. It was determined that the main
reason for performance map deviation is the difference in the
prediction of throat value. Due to this, the choke point of the
restored geometry takes place at a lower mass flow rate. The
ways of increasing the accuracy of throat value prediction will
be investigated in further research.

3.2.2 Performance Prediction Results

The average accuracy of the performance model is 99.6%
with an error threshold of 5%, and 99.9% with a 10% error
threshold respectively. Wherein the higher accuracy level was
reached for the ptr parameter (99.9 %). Efficiency prediction
accuracy was 99.4%.

The results of ptr and eff_tt prediction with the uncertainty
range for the design of the validation data set are presented in
FIGURE 13 and FIGURE 14.

It can be seen that the approaches used for data
preprocessing allow for the acquisition of the physical shape of
speedlines. Utilization of the AutoML algorithm in combination
with additional training for uncertainty level calculations
provides satisfactory accuracy of predicted results. It should be
noted that there are still regions of model prediction where the

uncertainty level is higher and more data might needed in those
regions to reduce it.

rpm(Uncertainty), Z=0.5
— rpm(Predict), Z=0.5
2.5+ rpm Uncertalnty) 2-06
rpm(Predict), Z=0
rpm Untertalnty) Z—O?
rpm(Predict), Z=0.7
rpm(Uncertainty), Z=0.8
rpm(Predict), Z=0.8
rpom(Uncertainty), Z=0.9
— rpm(Predict), Z=0.9
rpm(Uncertainty), Z=1.0
— rpm(Predict), Z=1.0
rpm(Uncertainty), Z=1.05
— rpm(Predict), Z=1.05

2.0

ptr, -

1.5

\
06 1.0 14 18 22 26 30
mfr, kg/s
FIGURE 13: COMPRESSOR MAP (PTR) PREDICTED BY

TRAINED MODEL

0.91 rpm{Uncertalnty) Z=0.5
— rpm(Predict), Z=0.5
) rpmtgn%erialr%ty% Z2=0.6
’ i rpm(Predict)
0.87 TN rpm}Uncertalnty) 2=0.7
rpm(Predict), Z=0.7
rpm%Uncertalnry) 7=0.8
rpm(Predict), Z=0.8
rpmiUncertalnty] 7=0.9
— rpm(Predict), Z=0.9
rpm(Uncertainty), Z=1,0
— rpm(Predict), Z=1.0
rpm(Uncertainty), Z=1.05
— rpm(Predict), Z=1.05

~ 0.7
I

B
b=
v 0.6

0.5 1

0.4 1

06 10 14 18 22 26 30
mfr, kg/s
FIGURE 14: COMPRESSOR MAP (EFF_TT) PREDICTED
BY TRAINED MODEL

3.3 Al Model Utilization in The Cycle Analysis Results
The cycle simulation was started with two values of mass
flow, 3.8 kg/s which corresponds to the small turboprop engines,
and 20 kg/s. The varied parameters are:
o splitter presence for design (splt)
vane diffuser after vaneless one presence (layout)
specific speed (ns)
blade loading (BL)
flow factor (Cz/U)
radial length of vane diffuser (k_VD)
radial length of the vaneless diffuser (k_VLD)

The result of the optimization is presented in TABLE 2. The
table shows that the optimal solutions contain the variable values
that are reasonable for centrifugal compressors. It should be
noted that the values of k_VD are lower than expected for the
designs with a high-pressure ratio (the pressure ratio in this case
is 5). There is an assumption that such behavior of k_VD can be
the reason for combining different configurations into a single
model. This question will be analyzed in the future.
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TABLE 2: OPTIMAL GEOMETRICAL PARAMETERS
ALONG THE CYCLE SIMULATION

mfr, | splt | layout | ns BL Cz/U k_VD | k_VLD | eff_tt
kg/s

3.8 1 1 0.795 | 0.435 | 0.5 1.15 1.08 0.836
20 1 1 0.64 0.492 | 0.586 | 1.15 1.08 0.834

The designs of both compressors are presented in
FIGURE 15.

A) MFR=3.8 Kkg/s, B) MFR=20 kg/s
Dimp = 0.287m Dimp =0.801 m
FIGURE 15: CENTRIFUGAL COMPRESSOR OPTIMAL
SOLUTION

4. CONCLUSION

The presented materials confirm the applicability of the
algorithms and methodologies, which were previously
developed for axial compressors for the creation of accurate Al
models to predict the geometry and performance of centrifugal
compressors in a wide range of operational applications
accompanied by the description and discussion of the
peculiarities of technology application to a different compressor
type.

The utilized approach allows for getting highly accurate
models for flow path geometry and performance prediction of
centrifugal compressors of various configurations, layouts, and
designs that had not been achieved by the other authors who
attempted to leverage NNs for centrifugal compressors. The
accuracy level on the validation set for the geometry model is
99.7% and 99.6% for the performance model with an error
threshold of 5%.

The created models were used in a cycle simulation
environment to predict the most efficient combination of design
variables of centrifugal compressors and avoid the need to pass
the compressor design task to the compressor team during the
system analysis step. Thus, eliminating the need for time-
consuming and expensive iterations between cycle analysis and
compressor design teams.

The developed technology provides the solid foundation for
the development of Al models for other turbomachinery types as
well as other components of gas turbine engines, power plants,
refrigeration units, and other types of systems.
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