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ABSTRACT 
Centrifugal compressors are widely used turbomachines 

employed across various fields as components of systems, such 

as being part of a turbocharger in an internal combustion engine 

or a refrigeration cycle. As a result of system analysis, the 
compressor parameters are determined with 0D or 1D solvers. 

Simultaneously, the compressor performance, as well as other 

components, influence the results of system analysis. The system 

analysis starts with compressor performance assumptions that 

could be taken from a prototype or based on the engineer’s 

experience and prior domain knowledge. If the new design 

deviates significantly from the prototype, its performance 

assumptions diverge from the actual compressor performance, 

necessitating numerous iterations to align system and 

component parameters with overall system requirements and 

constraints. Therefore, the design and development projects of 
modern centrifugal compressors are lengthy and very expensive.  

The research described in this paper aims to develop highly 

accurate single-stage centrifugal compressor performance 

models coupled with flow path geometry generation models 

leveraging artificial intelligence (AI) technology. These models 

offer the potential to circumvent expensive design-build-test 

iterations, thereby substantially reducing the time and cost of 

developing modern centrifugal compressors. 

In this paper, the various configurations of centrifugal 

compressors are considered, along with a description of the 

configurations of interest. The selection of input and output 

variables that provide sufficient information about compressor 
design with the respective ranges is justified. There is a detailed 

description of automated workflows for centrifugal compressor 

design and performance data generation for neural network 

training.  The approaches for data preprocessing that enable 

high-accuracy predictions are provided, and the peculiarities of 

applying the AI technology developed by the authors for 

centrifugal compressors are discussed. An analysis of the trained 

model accuracy as well as the technique for quantitative 

assessment of prediction reliability is provided. The utilization of 

the centrifugal compressor AI model integrated into a gas 

turbine engine simulation environment is demonstrated. 

Keywords: Centrifugal Compressor, Flow Path, 

Performance Map, Machine Learning, Artificial Neural Network 

NOMENCLATURE 
AI Artificial Intelligence 

ML Machine Learning 

1D One-Dimensional 

2D Two-Dimensional 

3D Three-Dimensional 

CFD Computational Fluid Dynamics 

NN Neural Network 

AutoML Automated Machine Learning 

RPM Revolutions Per Minute 

MSE Mean Squared Error 

MFR Mass Flow Rate 
ptr Total-to-Total Pressure Ratio 

eff_tt Total-to-Total Efficiency 

Deqx Equivalent Diffusion Factor 

ReLU Rectified Linear Unit 

D1t  inlet tip diameter 

D1h inlet hub diameter 

D2 outlet diameter 

z number of blades 

B axial length of the compressor wheel 

lc2 outlet impeller blade height 

FFNN Feed Forward Neural Network 

SVM Support Vector Machine 
GBPNN Gaussian kernel function back propagation neural 

network 

IGV Inlet Guide Vane 

GTU Gas Turbine Unit 

AE Autoencoder 



 2 © 2024 by ASME 

1. INTRODUCTION 
In the process of conducting a system cycle simulation, 

engineers should define the realistic performance levels expected 

from the components to be employed. These performance 

metrics can be established through past experiences or based on 
empirical correlations [1]. After that, the first iteration of the 

cycle simulation is executed. Once the boundary conditions are 

computed, they are then handed over to a design engineer for the 

preliminary design of the component based on different fidelity 

levels (1D/2D/3D) [2, 3]. This involves determining both the 

dimensions and the component performance. However, the 

determined performance may significantly deviate from what 

was initially assigned.  That leads to the necessity of 

performing additional iterations between cycle simulation and 

preliminary design levels, which elongates the duration and 

increases the costs of the project. 

There is an opportunity to minimize the number of iterations 
between the system analysis and preliminary design phases. This 

can be achieved by improving the performance estimation 

accuracy, coupled with the flow path geometry prediction 

procedure for different compressor configurations, accounting 

for off-design modes and avoiding the need to pass the 

compressor design task to the compressor team during the 

system analysis step. 

This study involved the development of an approach for 

estimating the performance and dimensions of centrifugal 

compressors with a fidelity comparable to 2D streamline results, 

significantly reducing time compared to existing 2D approaches. 
The developed approach is intended for use at the cycle 

simulation level, enabling engineers to quickly identify the 

optimal compressor design while considering design restrictions. 

As mentioned above, compressor performance estimation 

can be solved using the numerous codes that are currently 

available. The fidelity of these codes varies from 1D to 3D CFD. 

1D provides the results with a relatively brief time range, but it 

is based on empirical correlations or analytical equations derived 

with certain assumptions only valid in limited ranges [4]. The 

modern requirements for compressors demand higher fidelity 

and more assuredness in predictions. For higher fidelity, 3D CFD 

codes are used [5, 6]. They are more universal in this respect, but 
they are much more resource-intensive compared to 1D. 

The employment of autonomous ML technologies allows 

for the obtainment of the speed of performance prediction faster 

than 1D codes and the fidelity comparable to 3D CFD codes if 

3D CFD results are contained in the training data set. 

ML technologies are successfully used in areas of visual 

recognition, natural language processing, evidence-based 

treatment plans, games, and many others. However, despite 

remarkable success in the areas mentioned above, the application 

of AI for the prediction of compressor performance is just 

starting to be widely considered. The authors of [7] compared 
loss-analysis-based model prediction results with the Kriging 

model and neural network model. The results show a higher 

accuracy in interpolation and extrapolation capabilities of loss-

analysis-based models in comparison with other models. 

However, the study was performed for a single performance map 

only, and there is no comparison of the used model’s prediction 

for different compressor geometries and different shapes of 

speedlines. The authors do not address the question of selecting 

the optimal neural network architecture, which could influence 

the predicting capabilities of the neural network. Gholamrezaei 
and Ghorbanian [8] used FFNN for the generation of the 

performance map of axial compressors, employing the 

experimental data. The architecture of FFNN was selected based 

on empirical investigation that may not be optimal. The study is 

performed for a single performance map. Fei and Zhao [9] 

applied GBPNN and compared it with FFNN and SVM methods 

to check their interpolation and extrapolation capabilities for 

axial compressor maps. In [10] authors used SVM with a genetic 

algorithm to optimize its parameters to predict the performance 

of a compressor under all operating conditions through limited 

data. Loryś and Orkisz [11] checked the interpolation and 

extrapolation capabilities of FFNN accounting for the “relative 
stability margin” in the training process. In [12] authors applied 

FFNN to predict compressor characteristics of a single spool 

turboprop engine. Massoudi and others [13] used neural 

networks to generate fast and accurate high-fidelity models for 

small-scale turbocompressors. The optimization task based on 

the genetic algorithm was formulated to determine the optimal 

set of network hyperparameters. The trained AI model is then 

used to determine the optimal robust design of the compressor. 

Despite there being many publications that consider the 

application of NN for compressor performance prediction, most 

of them cover a single performance map and analyze 
interpolation and extrapolation capabilities in comparison with 

other approaches. That approach does not completely open the 

capabilities of NNs to predict compressor performance for 

different designs and layouts. Moreover, the architecture of NNs 

used in publications is not optimal and selected based on 

empirical or author assumptions, which could significantly 

influence prediction results. 

This work was focused on advancing the application of ML 

technologies for centrifugal compressor performance predictions 

accounting for different configurations and consists of three 

major steps: 

1. Adopt the procedure outlined in [14] for creating an AI-
based model used for performance prediction of the centrifugal 

compressor. 

2. Develop the algorithm and train the AI model for 

centrifugal compressor geometry predictions. 

3. Study the applicability of the trained AI models for 

centrifugal compressors in the cycle simulation tool to identify 

the most efficient compressor design. 

 
2. APPROACHES AND METHODS 

The following technical activities were performed: 

• Centrifugal compressor design 

• Training data generation and pre-processing 

• ML techniques, hyperparameters fine-tuning, and 

training 
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• Utilization of the trained centrifugal compressor 

models along the GTU cycle simulation. 

This section describes the approaches and methods used for 

every type of technical activity. 

 
2.1 Compressor Design 

In this work, the training data consists of the geometry 

generated for various configurations of single-stage centrifugal 

compressors and the corresponding performance for the 

compressor operational range. There are multiple configurations 

of centrifugal compressors: single stage or multistage, with IGV 

or without, with volute or without, etc. 

The training data generated in this work consists of four 

configurations of a compressor: impeller with splitters and 

without, layout with vane diffuser after the impeller, and without 

a vane diffuser. All configurations include a volute. 

The compressor flow path design and the performance 
estimation of the designed flow path were calculated using 

AxSTREAM® and its respective modules and solvers [2]. In 

particular, compressor design was performed with a Preliminary 

design module. The 2D streamline solver was used by employing 

loss model correlations based on Aungier [15]. The reliability of 

the compressor performance prediction utilizing the 

AxSTREAM® solvers is confirmed by numerous validation 

cases and a couple of them are provided below.  

FIGURE 1 represents case 1 validation results of the 2D 

solver for the centrifugal compressor [16]. In turn, FIGURE 2 

shows case 2 with the comparison of 2D solver results with test 
data from [17]. As it can be seen in the figures there is good 

agreement between the test data and 2D solver results, justifying 

the use of the solvers for generating sufficiently accurate datasets 

for AI training. 

The design of the compressor is determined by 15 variables: 

1. categorical variable that determines the splitter 

presence for design 

2. categorical variable that determines the presence of a 

vane diffuser after vaneless one 

3. design point pressure ratio 

4. design point mass flow rate 
5. flow factor 

6. work coefficient 

7. relative diameter ratio at the inlet 

8. specific speed 

9. blade loading 

10. meridional velocity ratio (outlet to the inlet of the 

impeller) 

11. impeller incidence angle 

12. the axial length of the impeller 

13. relative clearance 

14. radial length of a vane diffuser 

15. radial length of a vaneless diffuser 

The radial length of the vane diffuser and the radial length 

of the vaneless diffuser variables depend on the layout of the 

compressor. If the layout does not include the vane diffuser, then 

the radial length of the vane diffuser is equal to zero and the 

radial length of the vaneless diffuser is varied in the specified 

ranges. Otherwise, the radial length of the vaneless diffuser is 

equal to 1.08 and the radial length of the vane diffuser is varied. 

 

 
A) GEOMETRY OF COMPRESSOR [16]  

 

 
B) PRESSURE RATIO MAP FOR COMPRESSOR [16] 

 
C) EFFICIENCY MAP FOR COMPRESSOR [16] AT 

DESIGN ROTATIONAL SPEED 

 
FIGURE 1: CASE 1 VALIDATION OF SOLVER WITH 

COMPRESSOR [16] 
 

Additionally, the off-design rotational speed and off-design 

mass flow rate are used to predict the performance of the 

compressor at off-design modes. 
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A) GEOMETRY OF COMPRESSOR [17] 

 

 
B) PRESSURE RATIO MAP FOR COMPRESSOR [17] 

 
C) EFFICIENCY MAP FOR COMPRESSOR [17] AT 

DESIGN ROTATIONAL SPEED 

FIGURE 2: CASE 2 VALIDATION OF SOLVER WITH 

COMPRESSOR [17] 

 

All this data is used as the input parameters for the 
preliminary design. The designs were generated for fixed inlet 

total pressure and inlet total temperature. The working fluid is 

air. The design variables and constraints were selected to cover 

the wide range of compressors used in the automotive industry, 

refrigeration, aerospace, HVAC, etc. 

Sobol sequence [18] is used to generate the combinations of 

variables. 

 
2.2 Training Data Generation and Pre-processing 

Once the combination of the design variables is generated, 

the data is transferred to the preliminary design procedure. In 

case the design cannot be generated for the combination of 

variables, the current action is stopped for this combination and 

the following combination is evaluated. 

Otherwise, if the preliminary design of the flow path was 

completed successfully, the generated design is used for further 

actions. 

To automate the process of training data generation, an 

automated workflow was developed (FIGURE 3). The first 

section of the workflow is responsible for the compressor design 
procedure and geometrical data-set generation. It should be 

noted that the preliminary design procedure is based on an 

inverse task formulation, and the results of the direct calculation 

of the compressor may be slightly different. To save the dataset 

and the results of the direct task formulation, additional actions 

are automatically performed before the design is saved. The 

design procedure includes the utilization of 3D geometry for 

more accurate determination of the throat area, checking if the 

design is close to choke, estimating 2D performance at the design 

mode, and adjusting the relative clearance value if, after the 

design procedure, the absolute clearance value is out of the 
physical range. 

 
FIGURE 3: AUTOMATIC WORKFLOW FOR 

COMPRESSOR PERFORMANCE DATA GENERATION 

AND PRE-PROCESSING 

Start 
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In the current study, 51 geometrical parameters were 

extracted from each generated design and utilized as output data 

for AI model training. Furthermore, the designs are used to 

calculate the performance of compressors. 

The goal of the performance estimation part of the workflow 
is to prepare raw data coming from the compressor performance 

calculation code to a form suitable for successful training, i.e., 

remove outliers, smooth choke, and surge limit lines, and save 

the data set in a proper format. In particular, surge point 

determination is performed based on the criteria of the maximum 

allowable equivalent diffusion factor value (Deqx) [15]. This 

factor determines the onset of flow separation on the blade 

surface. The choke point was determined based on the criteria of 

an efficiency drop by 40% relative to the maximum efficiency 

value on the speedline. Performance points beyond the surge and 

choke points were considered as outliers. 

It should be noted that the workflow presented in FIGURE 3 
is a schematic representation. Every block in the figure is a block 

scheme created in AxSTREAM ION™ where certain blocks and 

scripts were integrated into a specific algorithm that processes 

the data. For example, the workflow for the determination of 

surge points is shown in FIGURE 4. 

 

 
FIGURE 4: WORKFLOW FOR DETERMINATION OF 

SURGE POINT FOR THE SPECIFIED SPEEDLINE 
 

In FIGURE 4 the "Set of mass flow values" iterates through 

the initial range of the assumed mass flow values where the 

speedline may theoretically exist and be determined by the 

"Mass Flow Rates Clarification for given rotational speeds" 

algorithm. Each iteration involves estimating the performance 

point, and the Deqx value while tracking the identifiers of the 

solver's successful completion, and saving the calculation results 

for future proceedings. Once all mass flow points have gone 

through the calculation, the results are transferred to the 

implemented methodology that determines the exact value of the 

mass flow, which corresponds to the required Deqx. The 
methodology is based on approximating the results of successful 

solver execution using the Catmull-Rom spline [19]. 

The presented workflow was successfully used to generate 

data sets for all considered compressors. 

During the process of preparing the data sets for compressor 

performance model training, the authors use a parametric model-

based approach for the representation of the compressor maps to 

improve the quality of prediction of the speedline shapes. This is 

because preliminary predictions of performance as separated 

points showed that the shape of speedlines was predicted 

incorrectly due to unrealistic oscillations near the surge point.  

The requirement for the parametric model was flexibility 
sufficient to represent the wide variety of speedline shapes on 

one hand and inherited correspondence to the typical shape of 

speedlines without unrealistic oscillations on the other hand. The 

flexibility of polynomials of the second order was not sufficient. 

In turn, the polynomials of the third or higher orders suffered 

from unphysical fluctuations. The flexibility and fit of speedlines 

for centrifugal compressors with satisfying accuracy were 

ensured by combining three Bezier curves [20]: one linear Bezier 

curve and two quadratic Bezier curves in the middle section of 

the speedline and at the surge region. The developed parametric 

model (FIGURE 5) was used for representing pressure ratio and 

efficiency curves vs mass flow. The model was named 
parametric Model 2. Model 1 which was used for the 

parametrization of pressure ratio curves of axial compressors is 

described in [14]. The connections of the sections of the 

combined curve are tangent to each other at respective 

connection points P0 and P2 forming a composite Bezier curve. 

 

 
FIGURE 5: PARAMETRIC MODEL 2 
 

The linear and quadratic Bezier curves are determined by 

equations (1) and (2) respectively, accounting for (3). 

 

 𝑩(𝑡) = 𝑷0 + 𝑡(𝑷1 − 𝑷0) (1) 

 𝑩(𝑡) = (1 − 𝑡)[(1 − 𝑡)𝑷0 + 𝑡𝑷1]
+ 𝑡[(1 − 𝑡)𝑷1 + 𝑡𝑷2] 

(2) 

 0 ≤ 𝑡 ≤ 1 (3) 

where, 𝑡 – is a parameter; and 𝑷0, 𝑷1, 𝑷2  – are Bezier curve 

base points in the respective coordinate system. 

According to Model 2, the shape of the combined curve is 

fully determined by 10 parameters: two coordinates of surge 

point P0’ plus two coordinates of choke point P2’, along with 

- Original data  

- Approximation by 
parametric model 

- Parametric model 
base points 
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six dimensionless factors determining the relative locations of 

the other four base points. 

The transformation of the training, validation, and test data 

sets to a parametric view is performed by the Levenberg-

Marquardt algorithm [21]. 
Besides fitting the generated data, additional manipulations 

were conducted to prevent the emergence of unphysical shapes 

in the predicted speed lines. In particular, to avoid the “mirror” 

speedlines which are caused by the error in the prediction of 

mass flow rate at the surge and choke points, the substitution of 

surge mass flow value is performed. The resulting surge mass 

flow value in this case is the difference between the predicted 

choke mass flow rate and the predicted difference in the choke 

and surge point mass flow rates. As the quality assessment of the 

result shows, such substitution positively affects the model 

accuracy, especially for the speedlines where the difference 

between surge and surge point mass flow rates is small. The 
difference between choke and surge mass flow rates is always 

positive, so the results of the trained model prediction are also 

positive. Consequently, this prevents the occurrence of predicted 

speed lines with a surge point to the right of the choke point.  

A similar approach is used for pressure ratio values, where 

the speed lines are almost horizontal. 
 

2.3 ML Techniques, Hyperparameters Fine-tuning, and 
Training 

2.3.1 Performance Prediction 
Different machine learning approaches/techniques can be 

used to predict compressor performance, such as the Kriging 

model, feedforward neural networks with back-propagation, 
Gaussian kernel function, support vector machines, and others 

[7-13]. 

Previous studies showed that utilization of feedforward 

neural networks (FFNN) with back-propagation with a focus on 

the search for optimal hyperparameters based on AutoML 

approaches, provides the required accuracy of performance-

trained models [14]. 

In [14] the AutoKeras algorithm [22] with Greedy tuner [23] 

is used for the search for optimal combinations of 

hyperparameters like the number of hidden layers, number of 

neurons in every layer, activation functions, learning rates, and 

dropout. 
MSE as a loss function and the “Adam” optimizer [24] were 

used for regression models. The data was normalized using a 

standard scaler [25]. 

The detailed justification of AutoKeras selection among the 

various AutoML approaches is presented in [14]. The number of 

trials for performance model training is equal to 20. 

It should be noted that the accuracy metric for the trained 

models was quantified as the percentage of speedlines that have 

a prediction error less than a specified threshold. The prediction 

error is calculated using equation (4) for every speedline from 

validation and test sets. The target value is 95% of all speedlines 
should have a relative difference < 5 % (equation (4)) in pressure 

ratio and efficiency. 

 

𝑅𝐷 =
2 ∑ (|𝐴𝑖−1 − 𝑃𝑖−1| + |𝐴𝑖 − 𝑃𝑖|) ∙ (𝐺𝑖 − 𝐺𝑖−1)𝑛

𝑖=1

∑ (𝐴𝑖−1 + 𝑃𝑖−1 + 𝐴𝑖 + 𝑃𝑖) ∙𝑛
𝑖=1 (𝐺𝑖 − 𝐺𝑖−1)

 (4) 

where, 𝐴𝑖 ,  𝐴𝑖−1 - the actual values of the considered parameter 

at the current 𝐺𝑖  and previous 𝐺𝑖−1  value of mass flow rate; 

𝑃𝑖 ,  𝑃𝑖−1 - the predicted values of the considered parameter at the 

current 𝐺𝑖 and previous 𝐺𝑖−1 value of mass flow rate. 

In the data sets transformed for the training of NNs to predict 

parametrized curves described in the previous section, the 

performance points belonging to a speedline are replaced with 

10 parameters for pressure ratio and efficiency curves. It was 

determined that, unlike in [14], where the coordinates of the 

choke and surge points play a much more substantial role in the 

final level of error for speedlines compared to the dimensionless 

factors, in centrifugal compressor speedlines with relatively low 

rotation speed, the dimensionless parameters also play a 
substantial role in predicting accuracy. Therefore, for the current 

study, the training process includes not only separate NNs for 

every coordinate of the choke and surge point but also separate 

NNs for dimensionless factors of parametric curves. Such a split 

still allows having the common models for the prediction of 

Choke MFR and Surge MFR and using them for ptr and eff_tt. 

Moreover, it allowed consistency in MFR values across all 

models. All models were trained independently, and then, at the 

inference step, the predictions of all the models were combined 

to recreate the entire speedline. The total number of models for 

the four considered performance parameter predictions (ptr and 

eff_tt) consists of 34 models. 
The required inputs to the model are the design parameters 

described in Section 2.1 and rpm and mfr at off-design. As the 

models predict the speedline choke and surge point locations it 

is also possible to use a trained model to predict the entire 

speedline. For this goal, the MFR definition was not obligatory. 

To estimate the uncertainty level of the prediction results, 

additional NN models were trained with different initial guesses 

for the model weight coefficients. The additional model training 

is performed once the optimal architecture of NN is determined 

by the AutoKeras algorithm. In this case, the result of the NN 

prediction is the average value of the variable for all additional 
models. The uncertainty level is determined by the maximum 

and minimum values of the variable across all additional models. 

The total number of uncertainty models is 20. 
 
2.3.2 Geometry Prediction 
The architecture of the geometry prediction model consists 

of a combination of two NN types: autoencoder (AE) and FFNN. 

Training of the models includes the following steps: 

• Utilization of autoencoders to train encoder and 

decoder parts 

• Replacing the encoder part by FFNN and training this 

network to preserve the decoder part 

As multiple testing results show, such a network structure 

allows for more accurate predictions compared to a simple 

FFNN architecture. The difference is especially noticeable for 



 7 © 2024 by ASME 

the geometrical model that contains a large number of outputs 

(geometry of multistage turbomachines). 

Accuracy estimation was performed using the same 

criterion as for performance prediction (equation 4). 

It should be noted that the architecture of the NN for the 
geometry prediction model depends on the number of input and 

output variables. The utilization of AutoKeras, as it is for 

performance models, will be tested in future studies. 

MSE was used as the metric for continual and discrete 

parameters. Optimization of the model for categorical 

parameters prediction such as splitter presence and type of layout 

was based on the Categorical Cross-Entropy loss function [26]. 

The one-hot encoding approach [27] was applied to the 

categorical variables. The main goal of this approach is to 

prevent the model's poor performance or unexpected results by 

avoiding a natural ordering between categories. 

It should be noted that utilization of such an approach makes 
it impossible to train a separated model for each output variable, 

as they are dependent on the same latent space, and created by 

training autoencoder. 

The uncertainty estimation of the output parameter is 

different from the performance prediction (FIGURE 6). Here the 

training process has started for the specified number of models 

(n) that are hyperparameters for the algorithm. The goal of NN 

training is to minimize the deviation between the average NN 

prediction and real value. The training process is then repeated 

k-times, which are represented as separate k branches in 

FIGURE 6. The result of NN prediction is the average value of 
all k-results predictions and the uncertainty range is the maximal 

and minimal value of variable for all k-results. For this study 

n=10 and k=10. 
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FIGURE 6: UNCERTAINTY DETERMINATION FOR 

GEOMETRY MODEL 

 

FIGURE 7 shows the accuracy variation at different n and k 
values. As can be seen at the low n value, the accuracy for k=1 

is higher than for k=10. This is because, for k=10, 20-30% of the 

n models have an accuracy lower than 80% which reduced the 

resulting model accuracy. In turn, for the case n=1 and k=1, the 

model with a higher accuracy is used. With the rise of n, and with 

the fixed k value, the influence of n “bad” models becomes 

lower. Further rise of n for fixed k leads to the resulting model 

accuracy growth. The accuracy of the resulting model is higher 

for higher values of k. However, for k=10 increasing the n value 

to higher than 9 does not lead to significant accuracy gains. Thus, 

taking into account that accuracy at n=10 and k=10 was almost 
equal to 1, the further increase of n and k was not justifiable for 

our case. 

 

 
FIGURE 7: MODEL ACCURACY WITH DIFFERENT N 

AND K 

 

2.4 Utilization of The Trained Models in System 
Simulation Environment 

To analyze the possibility of determining the optimal design 
of a centrifugal compressor by calculating the thermodynamic 

cycle, the gas turbine unit (GTU) cycle was created in a system 

simulation environment (FIGURE 8). 

 

 
FIGURE 8: GTU CYCLE TO TEST TRAINED AI MODELS 

 

The GTU cycle in FIGURE 8 includes the following main 

components: intake, compressor, gas generator, compressor 
turbine, power turbine, and generator. The AxSTREAM System 

Simulation™ tool was used to integrate the trained centrifugal 

AI models (geometry and performance) using API. It should be 

noted that the AI component for model integration is 

independent and can be related to any component in the system 

simulation tool, e.g. turbine, heat exchanger, combustor, etc. 

In this study, the cycle simulation environment provides the 

boundary conditions to AI models and gets back the performance 

level and geometry values. The AI performance estimation 
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procedure is called at each internal iteration of the system 

simulation solver. 

The goal of the optimization is to determine the optimal 

combination of compressor design parameters that maximize 

efficiency. The Differential Evolution algorithm [28] is 
employed as the optimization method. The population size is 

100, the number of iterations is 30, the “polish” option is set to 

true, and the accuracy is 1E-5. 

The results of the simulation are presented in section 3.3.  

 

3. RESULTS AND DISCUSSION 
Leveraging the approaches and methods described in the 

previous section, the respective technical activities were 

performed. Selected results are presented and discussed in this 

section. 

 

3.1 Training Data Generation and Pre-processing 
Results 

Utilizing the workflow described in section 2.2, the 

performance and geometry data were generated for a wide range 

of pressure ratios and mass flows. The generated data was then 

pre-processed and prepared, i.e., the generated data sets were 

clean and ready to be used for training. 

The following data sets were generated: 

• Geometry: 33,498 geometry points in the training data set. 

• Performance: 3,128,586 performance points in the 

training data set that corresponds to 14,900 compressor designs. 

After transforming separated speedline points to Bezier splines 
representation by automatic curve fitting as described in Section 

2.2, the final number of points for performance prediction 

consists of 104,000 points. 

Examples of the generated data with automatic curve fitting 

for total-to-total pressure ratio (ptr) and total-to-total efficiency 

(eff_tt) are presented in FIGURE 9 and FIGURE 10. 
 

 
FIGURE 9: TOTAL-TO-TOTAL PRESSURE RATIO 

AUTOFITTING EXAMPLE  
 

In FIGURE 9 and FIGURE 10, the dots represent the 

performance points from the generated data sets, and the lines 

are fitted curves by the parametric model described in Section 

2.2. The legend represents rotational speed in % to the design 

speed. It can be seen that Model 2 has sufficient flexibility to 

approximate the wide variety of speedline shapes and does not 

have any unphysical oscillations or kinks. It should be noted that 

the presented performance curves do not contain sharp spikes. In 
[14 and 29] it was shown that Model 2 was able to represent even 

sharp spikes of efficiency curves that are typical for high-loaded 

axial compressors. 
 

 
FIGURE 10: TOTAL-TO-TOTAL EFFICIENCY AUTO 

FITTING EXAMPLE 

 
3.2 Training Results 
3.2.1 Geometry Prediction Results 

The results of geometry model training show that for 99.7% 

of validated designs the geometrical parameters prediction error 

does not exceed 5%, and the error for 99.9% of designs does not 

exceed 10%. 

The example of the predicted geometry inserted into 

AxSTREAM® is shown in FIGURE 11. 

 

 
FIGURE 11: PREDICTED GEOMETRY LOADED IN 

AXSTREAM®  
 

TABLE 1 demonstrates the geometrical model prediction 

for validated designs. 
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TABLE 1:  PREDICTION ERRORS FOR GEOMETRY 

 
D1t  

error, % 

D1h  

error, % 

D2  

error, % 

z 

error,% 

B 

error,% 

lc2 

error,% 

Design1 0.23 1.10 1.10 0.00 1.52 2.46 

Design2 0.07 0.15 0.15 0.00 0.20 2.64 

Design3 0.06 0.02 0.02 0.00 0.03 0.14 

 

FIGURE 12 shows the compressor performance calculated 

in AxSTREAM® based on the predicted geometry (“predict” 

line in the figure) and the performance from the validation 

dataset (“true” line in the figure) that was generated using the 

automated workflow (Section 2.2). This is to demonstrate the 

quality of centrifugal compressor flow path geometry 

predictions. 

 

 
FIGURE 12: COMPRESSOR MAP FOR THE TRUE AND 

PREDICTED DESIGNS 
 

It can be seen that the developed approach for geometry 

prediction allows getting the geometry of the centrifugal 

compressor with high accuracy. It was determined that the main 

reason for performance map deviation is the difference in the 

prediction of throat value. Due to this, the choke point of the 
restored geometry takes place at a lower mass flow rate. The 

ways of increasing the accuracy of throat value prediction will 

be investigated in further research. 

 

3.2.2 Performance Prediction Results 
The average accuracy of the performance model is 99.6% 

with an error threshold of 5%, and 99.9% with a 10% error 

threshold respectively. Wherein the higher accuracy level was 

reached for the ptr parameter (99.9 %). Efficiency prediction 

accuracy was 99.4%. 

The results of ptr and eff_tt prediction with the uncertainty 
range for the design of the validation data set are presented in 

FIGURE 13 and FIGURE 14. 

It can be seen that the approaches used for data 

preprocessing allow for the acquisition of the physical shape of 

speedlines. Utilization of the AutoML algorithm in combination 

with additional training for uncertainty level calculations 

provides satisfactory accuracy of predicted results. It should be 

noted that there are still regions of model prediction where the 

uncertainty level is higher and more data might needed in those 

regions to reduce it. 

 

 
FIGURE 13: COMPRESSOR MAP (PTR) PREDICTED BY 

TRAINED MODEL 
 

 
FIGURE 14: COMPRESSOR MAP (EFF_TT) PREDICTED 

BY TRAINED MODEL 

 

3.3 AI Model Utilization in The Cycle Analysis Results 
The cycle simulation was started with two values of mass 

flow, 3.8 kg/s which corresponds to the small turboprop engines, 

and 20 kg/s. The varied parameters are: 

• splitter presence for design (splt) 

• vane diffuser after vaneless one presence (layout) 

• specific speed (ns) 

• blade loading (BL) 

• flow factor (Cz/U) 

• radial length of vane diffuser (k_VD) 

• radial length of the vaneless diffuser (k_VLD) 

The result of the optimization is presented in TABLE 2. The 

table shows that the optimal solutions contain the variable values 

that are reasonable for centrifugal compressors. It should be 

noted that the values of k_VD are lower than expected for the 

designs with a high-pressure ratio (the pressure ratio in this case 

is 5). There is an assumption that such behavior of k_VD can be 

the reason for combining different configurations into a single 

model. This question will be analyzed in the future. 
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TABLE 2: OPTIMAL GEOMETRICAL PARAMETERS 

ALONG THE CYCLE SIMULATION 
mfr, 
kg/s 

splt layout ns BL Cz/U k_VD k_VLD eff_tt 

3.8 1 1 0.795 0.435 0.5 1.15 1.08 0.836 

20 1 1 0.64 0.492 0.586 1.15 1.08 0.834 

 

The designs of both compressors are presented in 

FIGURE 15. 
 

 

  

  
A) MFR=3.8 kg/s, 

DIMP = 0.287 m 

B) MFR=20 kg/s 

DIMP = 0.801 m 

FIGURE 15: CENTRIFUGAL COMPRESSOR OPTIMAL 

SOLUTION 
 

4. CONCLUSION 
The presented materials confirm the applicability of the 

algorithms and methodologies, which were previously 

developed for axial compressors for the creation of accurate AI 

models to predict the geometry and performance of centrifugal 

compressors in a wide range of operational applications 

accompanied by the description and discussion of the 

peculiarities of technology application to a different compressor 

type. 

The utilized approach allows for getting highly accurate 

models for flow path geometry and performance prediction of 

centrifugal compressors of various configurations, layouts, and 
designs that had not been achieved by the other authors who 

attempted to leverage NNs for centrifugal compressors. The 

accuracy level on the validation set for the geometry model is 

99.7% and 99.6% for the performance model with an error 

threshold of 5%. 

The created models were used in a cycle simulation 

environment to predict the most efficient combination of design 

variables of centrifugal compressors and avoid the need to pass 

the compressor design task to the compressor team during the 

system analysis step. Thus, eliminating the need for time-
consuming and expensive iterations between cycle analysis and 

compressor design teams.  

The developed technology provides the solid foundation for 

the development of AI models for other turbomachinery types as 

well as other components of gas turbine engines, power plants, 

refrigeration units, and other types of systems. 
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