Mixed Flow Compressor Design Software – AxSTREAM® Platform Overview

The AxSTREAM® platform for multidisciplinary turbomachinery design, analysis and optimization software tools provides a fully integrated and streamlined solution for the complete flow path design process of axial-radial (mixed-flow) compressors.

For multi-stage centrifugal compressors the following software capabilities are available:

  • Opportunity to simulate heat exchangers/intercoolers in the flow path
  • Design, analysis and optimization of deswirlers, U-bend (return channels), secondary flows, piping losses, etc.
  • Possibility to design for and analyze/optimize different rotation speeds for groups of stages.

Starting from the preliminary design (defining basic machine performance from just a few simple parameters such as geometrical constraints, inlet/outlet boundary conditions), AxSTREAM® progresses through a 1D inverse task solver optimizer, to continue with meanline (1D) and axisymmetric (2D) analysis, profiling and 3D blade design, 3D finite element analysis (FEA) for structural calculations, secondary air flow hydraulic and thermal calculations (including bleed), rotor design, bearing analysis, rotor dynamics, volute design and 3D CFD calculations.

For the radial stage(s) various configurations of impeller (axial-radial, radial and diagonal, with or without splitters), diffuser (vane, vaneless, radial, with or without axial downstream stator), volute and IGV (inlet guide vane) can be selected in the conceptual design phase or inputted/changed/edited at any point of the project.

When the axial-radial flow compressor design project is finished, AxSTREAM® provides easy export of the blade geometry and its attachments (root, disk, wheel and shroud) to the most common file formats allowing users to link with their existing capabilities for further analyses or creation of manufacturing drawings.

The tasks user can solve with AxSTREAM® include:

  • Design new axial-radial compressors from scratch
  • Analyze existing mixed-flow compressors and their performance at design and off-design conditions (including stall, surge and choke)
  • Redesign, optimize, rerate and upgrade existing radial and axial compressors/components
  • Reverse engineer axial-radial compressor designs
  • Troubleshoot and correct efficiency/reliability issues in existing hardware

As a fully integrated turbomachine design software platform, the AxSTREAM® platform provides users with the full array of axial and radial compressor design software solutions, whatever the compressible or incompressible working fluid (steam, gas, mixtures, organic fluids, refrigerants, sCO2, combustion products, etc.), across all of the crucial design stages for any number of stages and modules.

Loss models for profile, secondary, transient and leakages losses can be independently selected for each flow path element from a few standard ones (like Aungier, Wright-Miller, Howell or Lieblein), from some corrected based on SoftInWay Inc experience or even customized as desired by the users. Read on for more details about each step of the design process utilizing the AxSTREAM® Platform and take a look at some of our resources below.

Mixed-Flow Compressor Resources
Axial-Radial Compressor Preliminary Design Software

The mixed-flow compressor Preliminary Design procedure is used to create thousands of machine flow path designs from scratch within seconds from a set of boundary conditions, geometrical parameters and constraints to design a number of axial compressor stages followed by any number of centrifugal compressor stages.

AxSTREAM® can design mixed-flow compressors, with/without IGV (inlet guide vane), OGV (outlet guide vane), with multiple extractions/injections, inter-stage heat exchangers, with vaned or vaneless diffusers, radial/axial-radial or diagonal impellers, etc. for any given specific diameter and for any number of stages and modules.

The Design Space Explorer allows the user to explore a set of axial and radial compressor stage design solution points generated with the Solution Generator. This gives users the possibility to select appropriate solutions by specifying different types of machine constraints and limitations. The Preliminary Design Map features allows users to compare the performance and range of operation (including choke and surge margins) of different machines at the conceptual design level.

The Post-design module provides the user with capabilities to adjust geometric parameters all while retaining the desired boundary conditions. An S1/S2 flow path adjustment option enables users to optimize separate components for efficiency based on variation of profile chord, aspect ratio and number of blades.

Axial-Radial Compressor Meanline & Streamline Solver Software

The Streamline solver module allows performing meanline (1D) or axisymmetric (2D) calculation of turbomachines to determine streamwise and spanwise distribution of kinematics, thermodynamics and loss parameters as well as leakages and secondary air flows (including bleed) for a given set of boundary conditions. Controlled and uncontrolled extractions and injections are supported with fixed flow rate, pressure controlled or specified as a percentage of main flow. Additionally, heating of the working fluid through the walls (frame, etc.) of the channel can also be considered.

Axial-Radial Compressor DOE and Optimization Software

AxSTREAM® is fully capable of mixed-flow compressor optimization calculations including through the use of a DOE approach (Design Of Experiment) in the AxPLAN module on both the axial and radial components.

This module uses the meanline and streamline solvers previously mentioned to optimize a given geometry by performing various tasks. This experiment planning option can be run for any combination of input and output parameters within hundreds available.

Axial-Radial Compressor Performance Maps Software

This AxSTREAM® module called AxMAP also uses the meanline and streamline solvers presented but in the present case they are used to automatically generate performance maps for any number of variables; this includes for example the dependency of efficiency on rotation speed and pressure ratio, the influence of throat and clearance degradation over time on machine performance, optimum IGV restagger angle for a given set of rotation speeds (study of pre-swirl), etc.

In addition to the map and AxSTREAM® project results experimental results can be stored for comparison purposes.

Axial-Radial Compressor Profiler and Blade Design Software

For mixed-flow compressors the profiling of the blades in AxSTREAM® is performed individually for axial and radial components. Both are used to create and edit 3D airfoils using a wide range of geometric tools and interactive charts that allow users to configure the compressor blades easily.

The AxSTREAM®’s Axial Profiler and Blade Design software module is used to create and edit 3D airfoils (rotors, stators, IGV, OGV) using different profiling modes including MCA, DCA and more. It includes several optimization methods and a potential flow solver which automatically calculates the distribution of several parameters along the axial compressor profile outline. This module can be used for 3D blade design, shaping and stacking. Profiles can even be stored to/imported from the ATLAS Profile Database for use in different sections, blades or even projects.

The AxSTREAM®’s Radial Profiler and Blade Design software module allows designers to independently control beta, theta and thickness distributions at different sections of the radial blade with curvature monitoring. Forward and backward sweep can even be created. Leading and trailing edges can be cut-off, circular or elliptical as desired for 3D blades, ruled-surface blades, Aungier-distribution and prismatic blades. Splitter blades can be profiled dependently or independently from the main blade.

Finalized geometries can be exported in 3D to numerous CAD, CAE formats.

Axial-Radial Compressor Finite Element Analysis Software (FEA)

Once the aerodynamic shape of turbomachinery blades has been completed the AxSTRESS module inside AxSTREAM® can be used to perform express 3D structural, modal and harmonic analysis as well as Campbell and interference (SAFE) diagrams of the blades and their attachments (wheels, disks, roots, shrouds) using a finite element analysis (FEA) method for both axial and radial components.  Hot-to-cold and cold-to-hot calculations can also be performed.

Mixed-flow compressor boundary conditions are automatically taken from the corresponding AxSTREAM® project to optimize the aero-mechanical iteration process. Blade attachments can be added to the 3D blade providing the opportunity to analyze the complete 3D model without leaving AxSTREAM®. An automated mesh generator is included inside the module which allows refinement of cells in each part of the geometry.

Post-processing capabilities are pretty extensive and allow reviewing the stress and displacement values in different directions for any calculated mode on the blade surface and inside the blade.

Upon successful analysis the blade and its attachments can be exported for additional post-processing and manufacturing drawings creation.

Axial-Radial Compressor Computational Fluid Dynamics Software (CFD)

AxSTREAM®’s Computational Fluid Dynamics (CFD) software, AxCFD, can be used for 3D flow analysis in blade-to-blade channels of mixed-flow compressor, for any given fluid, for subsonic, transonic and supersonic flows, using full 3D CFD formulation (Navier-Stokes, viscous with various turbulence models (standard k-e, k-e RNG, k-w, k-w SST models)). All of the data from the current AxSTREAM® project is transferred and used automatically by AxCFD to save significant time in the pre-processing phase while preventing human errors.

The mesh quality can be controlled at multiple locations to ensure the automated, embedded mesh generator produces a high quality segmentation of the blade channels for an individual row, stage or for the entire mixed-flow compressor.

Computations can be run for a given spanwise section throughout the domain or for the full 3D geometry.

Axial-Radial Compressor/Fan Volute Design

Internal and external volutes can be designed and edited in the AxSTREAM® platform whether sizing was automatically performed at the Preliminary Design stage or inputted manually.

For centrifugal compressor stages the following types of volutes can be created, edited and analyzed include trapezoidal cross-sections, circular cross-sections, circular arcs cross-sections, etc.

Different display options allow keeping an eye on the geometry during the interactive editing and the final geometry can be exported to CAD formats and/or analyzed in AxSTREAM®.

Axial-Radial Compressor Rotor Design Software

To enhance the turbomachinery design process all the way through rotor dynamics the Rotor Design module can be used.

It allows opening an AxSTREAM® project to automatically import the flow path it contains. Blade attachments can then be imported from the AxSTRESS FEA tool where they were designed so that the rotor (shaft) geometry can be generated for given materials while accounting for structural constraints.

The resulting shaft geometry and its respective materials can then be automatically recognized in the AxSTREAM® RotorDynamics tool along with the blades and their attachments which are imported as mass-inertia elements.

Axial-Radial Compressor Bearing Analysis Software

AxSTREAM®’s Bearing software allows users to analyze detailed models of bearings of different configurations.

Steady-state, transient, and map analysis can be performed to accurately calculate the bearings different hydrodynamic and mechanical characteristics. The software features a flexible geometry configurator to model features such as pockets, lobes, oil supply channels, etc.

The static equilibrium and the bearing hydrodynamic characteristics including everything required to perform rotor dynamic calculations can be calculated for one or several rotation speeds and operation stability can be concluded.

Export of calculated projects allows automatic recognition of damping and stiffness coefficients in AxSTREAM® RotorDynamics.

Axial-Radial Compressor Rotor Dynamics Software

The AxSTREAM® RotorDynamics software performs vibrational analysis (both lateral and torsional) of radial and axial turbine rotors (steam, gas, etc.) as well as centrifugal and axial compressor rotors, turbocharger trains, generators, electric motors, etc.

This versatile software can perform several types of analysis including Static Rotor Deflection, Lateral Critical Speeds calculation, Critical Speed Maps, Damped Unbalance Response, Train Torsional Modal and Transient, and Stability calculations.

Axial-Radial Compressor Cooling Flows & Secondary Systems Software

Mixed-flow compressor secondary flows can be analyzed easily using AxSTREAM® NET. Users can benefit from a flexible modeling and representation of any fluid path and solid structure as a set of 1D elements which can be connected to form a thermal-fluid network whether the final blade geometry is known or unknown.

AxSTREAM® NET can even be used to model the entire thermal-fluid network of a complete units (including gas turbine) with compressor, extractions, injections, etc. for compressible and incompressible pure fluids and mixtures.

Axial-Radial Compressor Geometry Reverse Engineering Software

AxSTREAM®’s mixed-flow compressor reverse engineering module, AxSLICE, is used for the extraction of profile geometry from an axial or radial blade’s 3D model in STL, IGES or CURVE formats as a CAD file with surfaces or cloud of points obtained by 3D laser scan.

The recognized properties can immediately be loaded into an AxSTREAM® mixed-flow compressor project to calculate its performance, kinematic and thermodynamic parameters and losses at design point and off-design conditions using the meanline solver (1D), streamline solver (2D), or AxCFD (3D). In addition stress calculations on the recognized geometry can be performed as well as rerates, upgrades, optimizations, etc.