Axial Compressor/Fan Design Software – AxSTREAM® Platform Overview

The AxSTREAM® platform for multidisciplinary turbomachinery design, analysis and optimization software tools provides a fully integrated and streamlined solution for the complete flow path design process of axial compressors and axial fans.

Starting from the preliminary design (defining basic machine performance from just a few simple parameters such as geometrical constraints, inlet/outlet boundary conditions), AxSTREAM® progresses through a 1D inverse task solver optimizer, to continue with meanline (1D) and axisymmetric (2D) analysis, profiling and 3D blade design, 3D finite element analysis (FEA) for structural calculations, secondary air flow hydraulic and thermal calculations (including bleeds), rotor design, bearing analysis, rotor dynamics and 3D CFD calculations.

When the axial flow compressor/fan design project is finished, AxSTREAM® provides easy export of the blade geometry and its attachments (root, disk and shroud) to the most common file formats allowing users to link with their existing capabilities for further analyses or creation of manufacturing drawings.

The tasks user can solve with AxSTREAM® include:

  • Design new axial compressors/fans from scratch
  • Analyze existing axial compressors/fans and their performance at design and off-design conditions (including stall, surge and choke)
  • Redesign, optimize, rerate and upgrade existing axial fans, axial compressors and their components
  • Reverse engineer axial compressor and axial fan designs
  • Troubleshoot and correct efficiency/reliability issues in existing hardware

As a fully integrated turbomachine design software platform, the AxSTREAM® platform provides users with the full array of axial compressor/fan design software solutions, whatever the working fluid (steam, gas, mixtures, organic fluids, refrigerants, sCO2, combustion products, etc.), across all of the crucial design stages for single-stage, multi-stage and multi-module configurations.

Loss models for profile, secondary, transient and leakages losses can be selected from a few standard ones (like Wright-Miller, Howell or Lieblein), from some corrected based on SoftInWay Inc experience or even customized as desired by the users. Read on for more details about each step of the design process utilizing the AxSTREAM® Platform and take a look at some of our resources below.

Axial Compressor Resources
Axial Fan Resources
Axial Compressor/Fan Preliminary Design Software

The axial compressor/fan Preliminary Design procedure is used to create thousands of machine flow path designs from scratch within seconds from a set of boundary conditions (which can be imported from AxCYCLE where the thermodynamic calculations of the cycle were performed), geometrical parameters and constraints.

AxSTREAM® can design axial compressors and axial fans, with prismatic (cylindrical) or twisted blades, multiple extractions/injections, inter-stage heat exchangers, with or without IGV (inlet guide vanes) and OGV (outlet guide vanes), etc. for any number of stages and modules with a customizable specific diameter and taper flexibility.

 The Design Space Explorer allows the user to explore a set of axial compressor design solution points generated with the Solution Generator. This gives users the possibility to select appropriate solutions by specifying different types of machine constraints and limitations. The Preliminary Design Map features allows users to compare the performance and range of operation (including choke and surge margins) of different machines at the conceptual design level.

The Post-design module provides the user with capabilities to adjust geometric parameters all while retaining the desired boundary conditions. An S1/S2 flow path adjustment option enables users to optimize separate components for efficiency based on variation of profile chord, aspect ratio and number of blades.

Axial Compressor Meanline & Streamline Solver Software

The Streamline solver module allows performing meanline (1D) or axisymmetric (2D) calculation of turbomachines to determine streamwise and spanwise distribution of kinematics, thermodynamics and loss parameters as well as leakages and secondary air flows (including bleed) for a given set of boundary conditions. Controlled and uncontrolled extractions and injections are supported with fixed flow rate, pressure controlled or specified as a percentage of main flow. Additionally, heating of the working fluid through the walls (frame, etc.) of the channel can also be considered.

Axial Compressor/Fan DOE and Optimization Software

AxSTREAM® is fully capable of axial flow compressor and axial fan optimization calculations including through the use of a DOE approach (Design Of Experiment) in the AxPLAN module.

This module uses the meanline and streamline solvers previously mentioned to optimize a given geometry by performing various tasks. This experiment planning option can be run for any combination of input and output parameters within hundreds available.

Axial Compressor/Fan Performance Maps Software

This AxSTREAM® module called AxMAP also uses the meanline and streamline solvers presented but in the present case they are used to automatically generate performance maps for any number of variables; this includes for example the dependency of efficiency on rotation speed and pressure ratio, the influence of throat, chord and thickness degradation over time on machine performance, optimum IGV restagger angle for a given set of rotation speeds (study of pre-swirl), etc.

In addition to the map and AxSTREAM® project results experimental results can be stored for comparison purposes.

Axial Compressor/Fan Profiler and Blade Design Software

The AxSTREAM®’s Axial Compressor/Fan Profiler and Blade Design software module is used to create and edit 3D airfoils (rotors, stators, IGV, OGV) using different profiling modes including MCA, DCA and more. A wide range of geometric tools and interactive charts allows users to configure the axial compressor’s blades easily and in a short time of time.

Several optimization methods are available including an automatic profile optimization based on the minimization of profile losses within a given range of blade properties.

A potential flow solver in the profiling module automatically calculates the distribution of several parameters along the axial compressor/fan profile outline.

Once the profiling of each spanwise section has been performed the axial compressor/fan blade designer can be used for 3D blade design, shaping and stacking.

Profiles can even be stored to (and imported with several possible adjustments from) the ATLAS Profile Database for use in different sections, blades or even projects.

Finalized geometries can be exported in 3D to numerous CAD, CAE formats.

Axial Compressor/Fan Finite Element Analysis Software (FEA)

Once the aerodynamic shape of turbomachinery blades has been completed the AxSTRESS module inside AxSTREAM® can be used to perform express 3D structural, modal and harmonic analysis as well as Campbell and interference (SAFE) diagrams of the blades and their attachments (disks, roots, shroud) using a finite element analysis (FEA) method.  Hot-to-cold and cold-to-hot calculations can also be performed.

Axial compressor and axial fan boundary conditions are automatically taken from the corresponding AxSTREAM® project to optimize the aero-mechanical iteration process. Blade attachments can be added to the 3D blade providing the opportunity to analyze the complete 3D model without leaving AxSTREAM®. An automated mesh generator is included inside the module which allows refinement of cells in each part of the geometry.

Post-processing capabilities are pretty extensive and allow reviewing the stress and displacement values in different directions for any calculated mode on the blade surface and inside the blade.

Upon successful analysis the blade and its attachments can be exported for additional post-processing and manufacturing drawings creation.

Axial Compressor/Fan Computational Fluid Dynamics Software (CFD)

AxSTREAM®’s Computational Fluid Dynamics (CFD) software, AxCFD, can be used for 3D flow analysis in blade-to-blade channels of axial compressors and axial fans, for any given fluid, for subsonic, transonic and supersonic flows, using full 3D CFD formulation (Navier-Stokes, viscous with various turbulence models (standard k-e, k-e RNG, k-w, k-w SST models)). All of the data from the current AxSTREAM® project is transferred and used automatically by AxCFD to save significant time in the pre-processing phase while preventing human errors.

The mesh quality can be controlled at multiple locations to ensure the automated, embedded mesh generator produces a high quality segmentation of the blade channels for an individual row, stage or for the entire axial compressor.

Computations can be run for a given spanwise section throughout the domain or for the full 3D geometry.

Axial Compressor/Fan Rotor Design Software

To enhance the turbomachinery design process all the way through rotor dynamics the Rotor Design module can be used.

It allows opening an AxSTREAM® project to automatically import the flow path it contains. Blade attachments can then be imported from the AxSTRESS FEA tool where they were designed so that the rotor (shaft) geometry can be generated for given materials while accounting for structural constraints.

The resulting shaft geometry and its respective materials can then be automatically recognized in the AxSTREAM® RotorDynamics tool along with the blades and their attachments which are imported as mass-inertia elements.

Axial Compressor/Fan Bearing Analysis Software

AxSTREAM®’s Bearing software allows users to analyze detailed models of bearings of different configurations.

Steady-state, transient, and map analysis can be performed to accurately calculate the bearings different hydrodynamic and mechanical characteristics. The software features a flexible geometry configurator to model features such as pockets, lobes, oil supply channels, etc.

The static equilibrium and the bearing hydrodynamic characteristics including everything required to perform rotor dynamic calculations can be calculated for one or several rotation speeds and operation stability can be concluded.

Export of calculated projects allows automatic recognition of damping and stiffness coefficients in AxSTREAM® RotorDynamics.

Axial Compressor/Fan Rotor Dynamics Software

The AxSTREAM® RotorDynamics software performs vibrational analysis (both lateral and torsional) of radial and axial turbine rotors as well as centrifugal and axial compressor rotors, fans, turbocharger trains, generators, electric motors, etc.

This versatile software can perform several types of analysis including Static Rotor Deflection, Lateral Critical Speeds calculation, Critical Speed Maps, Damped Unbalance Response, Train Torsional Modal and Transient, and Stability calculations.

Axial Compressor/Fan  Cooling Flows & Secondary Systems Software

Axial compressor/fan secondary flows (bleed, bypass, etc.) can be analyzed easily using AxSTREAM® NET. Users can benefit from a flexible modeling and representation of any fluid path and solid structure as a set of 1D elements which can be connected to form a thermal-fluid network whether the final blade geometry is known or unknown.

AxSTREAM® NET can even be used to model the entire thermal-fluid network of a complete gas turbine with compressor, extractions, injections, etc. for compressible and incompressible pure fluids and mixtures.

Axial Compressor/Fan Geometry Reverse Engineering Software

AxSTREAM®’s axial compressor and axial fan reverse engineering module, AxSLICE, is used for the extraction of profile geometry from a blade’s 3D model in STL, IGES or CURVE formats as a CAD file with surfaces or cloud of points obtained by 3D laser scan.

The recognized properties can immediately be loaded into an AxSTREAM® axial compressor/fan project to calculate its performance, kinematic and thermodynamic parameters and losses at design point and off-design conditions using the meanline solver (1D), streamline solver (2D), or AxCFD (3D). In addition stress calculations on the recognized geometry can be performed as well as rerates, upgrades, optimizations, etc.