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1. Overview and Importance of Stress
Analyzer/Consumedlife Monitoring
Technology
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Introduction

U The demand for operational
flexibility of existing power plants
has significantly increased over the
last decade due to incentivized
growth of power generation from
renewables and CCPP.

U Thermal stress in steam turbine
thick-walled elements (the steam
turbine rotor in particular)
is a major limit on the flexible
operation of steam turbines

Fig. GE Steam Turbine for CCPP
http://www.directindustry.com/prod/ge -steam+turbines/product-1162891619774.html
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Importance ofStress Analyzer/Consumed Life Monitori
Technologies

Conflicting Requirements for CCPP Steam Turlidesign
U Acceleratedstarts

U Operationflexibility Table. Typical startip specification with Pn as nominal powefublished by VDE, 2012)
(frequent startup events) -
. Load gradient %R/min 1.5
U Longservice life Minimum load %Pn 40 60 50
Hot startup (<8h standstill h 3 6 1.5
Cold startup (>48h standsti h 10 10 4

Design Lifetimevs. In-field Actual Operational.ifetime

U Lifetimedesign requirements are based on theoretical sigptcurves

U Actualstart-up parameters usually differ from theoretical parameters

U Lifetime consumption must be corrected
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Importanceof Stress Analyzer/Consumed Life

I\/Ionitoring Technologies

U  The requirement of high operational flexibility powerplants and difference between theoretical
and actual stardup operation datacreatesa needfor utilization of online systems for monitoriragnd
controlling the damagef critical components

U  Such systems make use of different measurements and mathematical models enabling calculatior
thermal stresses and their continuous control

U Main purposes obnline stresscontrol:
U Assess thactual stress level in the steaturbine
U Protectsteam turbine from high thermal stress by monitoring steam temperature and flow
during transient and steady statgeration
U Ensure theshortest possible steam turbine start up time for a guaranteed number of startups
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Damage Mechanisms that Determinf@omponentLife

Common damagenechanisms in the
materials of turbinecomponents:

Fatigue (LCF, HCF)

Creep

CreepFatiguelnteractions

Corrosion

Stress Corrosion Cracking (SCC)
Mechanical Damage (erosion)

Thermal Aging (carbide coarsening/inclusion
growing)

a5 Sources hittp://pubs:sgi€pub.com/ajfy

Fig. Damage&teamTurbine Disk

entE e N et e e e

Souree: http://pubs.sciepub.com/ajme/3/6/23
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Damage Mechanisms that Determine Components Lif

Environmental factors Type of damage

//__: Fatigue

Rotation

Stress fiow B

Stationary
Transient

Thermal degradation

Temperature

Steam

Chemistry e

Corrosion

Moisture content
Depositions

Foreign objects

Erosion
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Fatiguein aPosition Exposetb High
Temperatureand aHigh Stress Leve

Fig. Creefpamagegmicro
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Turbine Damages Caused by Transients

1. Thermal Fatigue of Thiekall Turbine Design Elements

U  Thickwall turbine elements are prone to thermal fatigue caused by
unsteadystate alternating thermal stresses arising at trensients

U Rotors

U Valvesteamchests JUJUTUJL I e . i

i Nozzleboxes . : N " |
] _ Radial temperature difference

u Cas_lng.s M.— = . -M Axial temperature difference

U @SInglngS n emperature ax

Fig. Temperatur®ifferencein 300 MW Steam Turbine HRotor DuringCS

U Thermal stresses are caused by +stationary temperature differences across the thickness of the eleme

U HRIP rotors ¢riticalelements for steanturbines)

U Radial temperature differences in rotor steam admission sections should be used as the leading i
2F OGKS GdzNDAY SQastrassS YLISNI (0 dzNB k 0 K S NI | f

U  Continuous monitoring of these temperature differences should be arranged by means of mathermr
modeling of the rotor heating based on the measured heating steam temperatures
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Turbine Damages Associated willtansients

2. Brittle Fracture of Rotors %\

i Most incidents happened during staups sy WA

U Caused by a gradual growth lmfidenflaws in
the rotor metal under combined action of the
tensile centrifugal and thermal stresses

U Especially dangerous for largelP rotors

LP PORTION DUy W FORTION

|566°C. 3600rpm| | 225 MW |

' o 7 [Base-load operatiorﬁom May, 1957

_||-Brittle fracture during a cold start

U Rotor Failureexamples: Fig. Failure of thdMledium-Low-PressureRotor of a
1) Mediumlow pressure rotor (Tennessee, USA)  steam TurbindGallatin, Tennessee, USA, 1974).

2) 30BMW supercriticalpressure steam turbine | .
of LMZ at theKashirgpower plant ==, . N ; N

77
{

= I | = /@
; 2 ‘ S'ERY % ,’

Fig. Shaft breakage sections-8) of the 300 MW steam turbine
(Kashirapower plant, 2002)
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Turbine Damages Associated with the Transients

3. Stress Corrosioand Corrosion Fatigu€racking

U Evident in the phase transition zone of the LP cylinders 2 HARLL)
U Main factor causing crack creation and propagation is E S T : L
anodal dissolving of metal in the crack root bR

.

SECTION A-B

Fig. TypicalLocationsof SCC  Fig. SCC atl@iscRm in the Fig. Craclbamageon the LPM N2 {0 2 NJ
DamagegLP turbine discs) Blade Attachment Zone 660-MW Wet-Steam Turbineat Wirgassen

4. Solid-ParticleEosion
U Caused by oxide scale that exfoliates from Higimperature boiler surfaces, includisgiperheater/
reheatertubes, outlet headers, main / reheat stedines
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Turbine Damages Associated with the Transients

|
5. Plastic Distortion ofCasingand Other Stator Elements
U Great temperature unevenness lead to plastic deformation at the transients ansing
U  HRIP casings
U  Casing ringHRIPcylinders)
U  DiaphragmgHRIP cylinders)
U Key factor the quality of running the transients
U Also causedhy metal creep with stationary temperature differences

6. Casing Deformationgiumping or thermabend of the casing upward

Fig. TransversBeformationof Casing Fig. Bow ofCasing Toward$op
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Turbine Damages Associated with the Transients

N
7. Water Induction into Turbines

U Most frequent sourcesre:
U Mainand reheat steantines and their spragt temperatures
U Canalso descend from drainage lines of the main stdam@as, crossover pipes, and cylinadasings
U  Sometimes water and/or cold steam enter turbines through the end gland seals

8. Overheating of Turbine Components Caused by Windage

U Regimes characterized with low flow and high rotatspeed wherturbine stages operate in
O2 Y LINE a a 2vhidtilafignei®Q

U -LPBlades
- LP Rotor
- LP Exhaust Hood
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Fatigue of Major Steam Turbine Components

Stress Analyzer Technolog »
for HRIP components
DR — ~

HP and IP turbine rotors and casings
LCF due to starts anshutdowns.
Creep damage due to stationary operatio

Fig. GE 1094
Steam Turbine | EERIEds]Ia(=F (o]i6]¢ IP-LP bypass valvg Main and reheat turbine valve casings
(http://gm - LCF due to startsjll casings LCF due t LCF due to starts anshutdowns.
bsliinadstn® and shutdowns bypass operation | Creep damage due to stationary operatio

steamturbine/)
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2. Steam Turbine Components Thermal
Stress and Life Management in the Desic
Stage
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Mathematical Modeling of the Heating up Process
- Methods

U ¢KS GKSNXIFE adradsS 2F GKS adaSly (dz2NDAYySQa
components during transienis a critical
issue in thermestresses
evaluation/monitoring

U Methods:
U Heatconduction equatioranalytical/
numericalsolution
U Simulationusing analogous devices
(electricalanalogy)

U Mathematicalmodelling:
U  Transfer functions
u FDM
u FEA

U Experimental

Fig. 40MWSteam TurbindHPIPRotor Heating During Cold Stauip

SoftinWay: Turbomachinery Mastered



