Turbomachinery Mastered
Conceptual design and analysis of turbomachinery

AxSTREAM® SOFTWARE PLATFORM
xCYCLE™
design. analyze. optimize.

www.softinway.com
The premiere software platform for multidisciplinary design, analysis and optimization provides an integrated and streamlined approach to rotating turbomachinery design. This world class software solution encompasses the complete process of conceptual design for radial, axial and mixed flow turbomachinery: turbines, compressors, pumps, fans, rotors, bearings, and blowers.

AxSTREAM® has a Preliminary Design procedure that is used to create machines from scratch, using a set of boundary conditions, geometrical parameters and taking into account your specified constraints. With this information, AxSTREAM® performs the inverse and direct 1D analysis, 2D axisymmetric analysis, cascade profiling, 3D stress and modal analysis (FEA), 3D CFD analysis, rotor design, bearing analysis, and rotordynamics.

AxSTREAM® is the perfect tool for new design and redesign of your turbomachinery. AxSTREAM® simplifies the design of new machines from scratch, and streamlines the design and analysis of existing machines and their performance and provides redesign solutions to optimize and upgrade existing machines.

AxSTREAM® provides a full design and analysis solution for turbomachinery in a flexible and integrated environment that works with compressible and incompressible fluids.
AxSTREAM® Integrated Architecture

What if you could design, analyze and optimize your turbomachinery 50% faster and with better accuracy?

Introducing AxSTREAM®, powered by ION. The only fully integrated software platform for turbomachinery design and analysis.

What do we mean by integrated?

AxSTREAM® consists of modules that work together in an integrated design approach. Each module inside AxSTREAM® works from a central database, giving you a shortened and streamlined design experience that easily exchanges information between modules. Our architecture allows designers to perform different aspects of the design all in one convenient, integrated environment, which ultimately saves on engineering hours without sacrificing accuracy.

AxSTREAM™ Licensing

A flexible licensing system allows the customer to choose the appropriate set of modules. AxSTREAM® comes as either a single seat (attached to defined PC) or a floating license which can operate from a server on multiple computers.

Loss Models for Turbines, Compressors and Pumps:

AxSTREAM® has loadable, customizable and industry-standard loss models that include profile, transient, blockage and secondary losses as well as deviation angles for axial and radial turbines, compressors and pumps.

Some common loss models include Craig & Cox, Kacker & Okapuu, Wright-Miller and Mitrohin-Stepanov. Users can also incorporate their own, personalized loss-models.

For pumps, important characteristics such as NPSHR, cavitation specific speed and cavitation suction lift are taken into account.
ION
Optimize and structure tasks to accelerate the overall design process utilizing AxSTREAM ION. In addition to facilitating rapid design, this module permits the user to input their own personal criteria and modeling rules for intuitive use. ION also enables the integration of both commercial and in-house software systems for multi-criteria and multi-parameter optimization tasks & off-design studies.

Preliminary Design
Create machine flow path design from scratch or redesign partial or complete machines using a set of boundary conditions, geometrical parameters and specified constraints. Designers can generate a large amount of designs in a short time with the inverse solver. Each solution can be explored in the Design Space Explorer, where you can select and review appropriate solutions by specifying different types of constraints and limitations.

Meanline / Streamline Analysis
Perform meanline (1D), streamline (2D), or full streamline (FSC) calculations of the machine while taking into account a machine's geometry and boundary conditions. In addition to the existing loss and leakages models, you can add your own! Distribution of parameters can be visualized as colorful contours. At this stage it's possible to edit axial and radial dimensions and clearances.

AxMAP
This module uses the streamline solver for the purpose of developing automatic generation of performance maps. Study the influence of operational conditions and geometry variations on the performance. Each file can store existing experimental data to compare with calculation results.

AxPLAN
Using the streamline solver, this module can be run in meanline or streamline task formulation. It is the main optimization tool at the last phase of flow path design. The AxPLAN module allows the performance of various design tasks, utilizing fast Design of Experiment (DoE) study methods.

Profiling and 3D Blade Design
This module is used to create and edit 3D airfoils. The wide range of geometrical tools and interactive charts allows you to configure the blades easily and in a short time for each spanwise section before proceeding to their stacking by changing sets of profile parameters like inlet and outlet angles, wedge angles, edge radii, lean, sweep, etc. Users can also utilize the export module to export 3D blade geometry in various CAD, FEA and CFD formats including IGES and STL.

ATLAS
This system stores blade profiles that are standard for company practice, designed within AxSTREAM® and/or taken from the 140+ industry-approved steam and gas turbine profiles we provide. Profile creation and editing in ATLAS is flexible thanks to points, arcs or thickness distribution definition. Standard profiles can be inserted in the ATLAS module and then used in different projects and shared across a company network.
AxCFD

Perform 2D (Cascade CFD and axisymmetric) as well as 3D flow analysis in blade-to-blade channels using CFD formulation (Navier-Stokes, viscous with various turbulence models (standard k-ε, k-ε RNG, k-ω, k-ω SST models)). CFD can be calculated for individual rows, for a stage or for an entire machine! Results are the values of flow rate, efficiency, kinematic, and thermodynamic parameters distribution. All geometry data is automatically transferred from your AXSTREAM® project.

AxSTRESS

Perform express 3D Finite Element Analysis (static, modal, harmonic calculations) on blades and attachments (root, disk, shroud, lashing wire). Included are tools for automated, turbomachinery-specific mesh generation and results post-processing (including inside the object) as well as attachments creation and library. Seamless data transfer between the AxSTREAM® project and AxSTRESS™ is ensured for optimized iteration between aerodynamic and mechanical analyzes through automatic inheriting of geometry and boundary conditions.

Fluid Tool Box

Utilize a combination of tools relating to fluid properties and calculations. The Fluid Calculator tools facilitate the calculation of thermodynamic properties of any AXSTREAM®-embedded or custom fluid. The Fluid Designer tools allow creation of custom fluid files to be used inside AxSTREAM® for any pure fluid, mixture, or combustion products of more than 1000 different fuels and oxidizers with chemical equilibrium considerations.

AxSLICE

Extract the profile geometry of 3D blade models using AxSLICE. This module uses 3D models in STL, IGES, and CURVE formats. AxSLICE also provides a special option for extracting profiles from “cloud of points” obtained with a laser 3D scan. Results of the extraction can be immediately loaded into the AxSTREAM® project for analysis and redesign tasks.

Bearing

Determine the performance and mechanical characteristics of radial (hydrodynamic, aero, and rolling element bearings) and thrust bearings. Bearing allows users to synthesize and analyze detailed models of bearings for different configurations by performing steady-state, stability, and map analysis. This module has a flexible geometry configurator to model features such as pockets, lobes, and oil supply channels.

RotorDesign

The AxSTREAM® RotorDesign tool allows users to import a new/existing/optimized flow path design from any AxSTREAM® project in order to design the rotor. The user can use the AxSTREAM 2D flowpath layout or a manual input of the blade axial and radial positions and mass-inertia characteristics. After rotor design is completed it can be utilized/processed for rotor dynamic simulation or can be exported to CAD software.

RotorDynamics

Applications of AxSTREAM® RotorDynamics include different types of rotors that can be used in machines such as steam turbines, compressors, pumps, electric motors, generators, and more. The RotorDynamics software can perform several types of analysis including static rotor deflection, lateral critical speeds, critical speed map, damped unbalance response, stability, and train torsional modal and transient.

Call Today to Schedule Your Software Demo!
AxCYCLE™
Thermodynamic Cycle Design and Analysis

Simulate numerous types of cycles:
- GT Cycle
- Steam
- SC\(_2\)
- ORC
- Combined Steam & Gas
- Waste Heat Recovery

Features
- Simulate numerous types of cycles including gas, steam, ORC, combined, refrigeration, and more
- Create cycle diagrams through our predefined components library. Each component has predefined connection points and ports for fluid flow and mechanical power
- Run heat balance modeling simulations with only a small subset of component parameters
- Generate printer-friendly simulation results
- Calculate cycle maps to study the effects of different operating conditions and component parameters on the cycle performance. AxCYCLE™ also provides a special multi-run map option to calculate such relations
- Embedded P-H and T-S diagrams
- Estimate power plant equipment cost and conduct investment analysis of plant construction
- Simplify your process with an understandable Excel interface

AxSTREAM NET™
Thermal-Fluid System Modeling and Analysis

AxSTREAM NET™
- Simulates secondary flows and heat transfer at steady and unsteady (transient) conditions
- Allows users to create an infinite number of systems and sub-systems of solid structures, convection components, and fluid path elements
- Users have access to a library consisting of embedded components or can create their own elements and formulations
- Offers flexible representation of fluid path and solid structure as a set of 1D elements, which can be connected to each other to form a thermal-fluid network
- Has a number of applications including secondary flow systems present in gas turbines, steam turbines, and turbopumps, industrial gas systems, ventilation systems, generator/electro-motor cooling and so on

Applications
- Secondary Flows
- Blade Cooling
- Heat Exchangers
- HVAC Systems
- Pipeline Modeling
- Seal Modeling
AxSTREAM® Training Workshops:

SoftInWay delivers software tools and industry training that enable you and your organization to be more effective. With our extensive curriculum from AxSTREAM® hands on workshops to Waste Heat Recovery and Rotor Dynamics and Bearing Design courses, we cover the diverse training needs of our global turbomachinery customers through:

- Traditional classroom training
- Online courses
- Corporate learning programs
- Self-paced video courses

Our highly skilled Training Advisors will be happy to analyze your requirements and recommend the best training solutions for you! Call us NOW to boost your productivity in today's most compelling trends!

SoftInWay Inc. is a global engineering company specializing in the development of efficient turbomachinery. We provide extensive expertise through our services, software, and training. We offer our flagship software platform AxSTREAM®, powered by ION, for turbomachinery design, redesign, analysis, and optimization, as well as AxCYCLE™ - for the design and simulation of full thermodynamic cycles.

Founded in 1999, SoftInWay Inc. has offices in the U.S., Switzerland, India, and Ukraine and supports over 300 companies worldwide including OEMs, EPCs, and other service providers in power generation, oil and gas, aerospace, defense, automotive and clean tech sectors. We also work closely with leading universities and research laboratories, around the world.